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Combinatorial Optimization R&D at Sandia
• Efforts are centered on two primary research thrusts

– Risk Management
• Multi-stage, general mixed-integer
• Efficient risk versus cost tradeoff analysis
• Scalable Conditional Value-at-Risk (CVaR) computation

– Multi-Stage Stochastic Optimization
• Multi-stage, general mixed-integer
• Massively parallel environments

• Application drivers
– Contamination sensor network design (INFORMS Edelman Finalist)
– Network interdiction for critical infrastructure
– Biofuel network design
– Electrical grid generation and transmission capacity expansion
– Scalable unit commitment with large renewables penetration

• Funding sources
– DOE Office of Science, US EPA, Sandia LDRDSlide 2



Resource Allocation: Integer and Stochastic Programming

• Deterministic Mixed-Integer Programming (MIP)
– The PDE of Operations Research

– Approximable for most real-world problems (NP-Hard)
• Stochastic Mixed-Integer Programming (SMIP)

– SMIP = MIP + uncertainty + recourse

– Still NP-Hard, but far more difficult than MIP in practice
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Capacity Expansion as Stochastic Mixed-Integer Programming
• Many historical planning models are either deterministic or linear (or both)

– Driven by combinations of data availability and solver maturity

• With advances in IT and solver technology, multi-stage stochastic mixed-
integer formulations are becoming more prevalent in the literature

– Singh et al. (2009), Wang and Ryan (2010), Huang and Ahmed (2009)
– General paradigm captures key aspects of capacity expansion problems

• Key technological challenges to deploying multi-stage stochastic MIP models
– No canonical generation and transmission capacity expansion model
– Multi-stage stochastic MIP solvers are not yet general-purpose
– The difficulty of multi-stage stochastic MIPs likely requires parallelism

• Key requirement to solve the deployment barrier
– Modeling and solver framework to facilitate rapid prototyping of 

alternative solution strategies, supporting built-in parallelismSlide 4



Stochastic Mixed-Integer Programming: The Algorithm Landscape

• The Extensive Form or Deterministic Equivalent
– Write down the full variable and constraint set for all scenarios
– Write down, either implicitly or explicitly, non-anticipativity constraints
– Attempt to solve with a commercial MIP solver

• Great if it works, but often doesn’t due to memory or time limits
• Time-stage or “vertical” decomposition

– Benders / L-shaped methods (including nested extensions)
– Pros: Well-known, exact, easy for (some) 2-stage, parallelizable
– Cons: Master problem bloating, multi-stage difficulties

• Scenario-based or “horizontal” decomposition
– Progressive hedging / Dual decomposition
– Pros: Inherently multi-stage, parallelizable, leverages specialized MIP solvers
– Cons: Heuristic (depending on algorithm), parameter tuning

• Important: Development of general multi-stage SMIP solvers is an open research area
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Progressive Hedging: A Review and/or Introduction

Rockafellar and Wets (1991)



Progressive Hedging as a Stochastic Mixed-Integer Heuristic

• Progressive Hedging does provably converge in the convex case, in linear time
– NOTE: As practitioners know well, linear time can take a long time

• Progressive Hedging (PH) has been successfully used as a heuristic for multi-
stage mixed-integer stochastic programming

– Løkketangen and Woodruff (1996)
– Numerous others (Birge, Gendreau, Crainc, Rei)

• Practical and critical issues of note
– How to pick ρ?
– Cycle detection
– Convergence acceleration

• Variable fixing
• Slamming

Progressive Innovations for a Class of Stochastic Mixed-Integer Resource Allocation Problems 
(Watson/Woodruff, Sandia Technical Report, Journal Article Under Revision)



The Impact of Decomposition: Biofuel Infrastructure and Logistics Planning

Slide courtesy of Professor YueYue Fan (UC Davis)

Example of PH Impact:
• Extensive form solve time: >20K seconds
• PH solve time: 2K seconds



The Impact of Decomposition: Wind Farm Network Design

• Where to site new wind farms and transmission lines in a geographically 
distributed region to satisfy projected demands at minimal cost?

• Formulated as a two-stage stochastic mixed-integer program
– First stage decisions: Siting, generator/line counts
– Second stage “decisions”: Flow balance, line loss, generator levels

• 8760 scenarios representing coincident hourly wind speed, demand
• Solve with Benders: Standard and Accelerated

• Summary: A non-trivial Benders variant is required for tractable solution

Slide courtesy of Dr. Richard Chen (Sandia California)



Mean versus Risk? Some Terminology

Slide 10

Conditional Value-at-Risk 
(CVaR) is a linear 

approximation of TCE

Cost



Progressive Hedging and Conditional Value-at-Risk
• Scenario-based decomposition of Conditional Value-at-Risk models is 

conceptually straightforward (Schultz and Tiedemann 2006)

• But
– Computational issues are largely unexplored
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Selecting Scenarios to Ignore in Stochastic Optimization: 
Advances in Probabilistic Integer Programming Solvers

Capacitated Storage
(US Army Future Combat Systems)

Ignoring the 100-year Flood
(Infrastructure Planning)

Force-on-Force “Anomalies”
(Mission Planning)

Central Theme: The Need to Ignore a Small Fraction α of Scenarios During Optimization

Impact: - Best available heuristic for solving probabilistic integer programs
- First demonstration on large-scale, real-world problems

Results for network design: 
- 2-8% better solutions 
than CPLEX, 1440m 
versus ~10m



An Open-Source Optimization Modeling Tool

Modeling Capabilities
•  Abstract model definition    •  LP and MILP models
•  Manage multiple model instances
•   Stochastic modeling extensions

TO LEARN MORE VISIT >>

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s 
National Nuclear Security Administration under contract DE-AC04-94AL85000. 
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Programming Language
with Batteries Included

Key Features
•  Parallel solver execution       •  Extensible framework
•  Interface to many data sources     •  Portability     
•  Embedded in modern programming language
•  Freely available      •  Unrestricted open source license

Coopr Capabilities
•  Pyomo modeling language

•  Stochastic programming     •  Solver interfaces
•  Modeling extensions       •  GUI front-end

Coopr Resources
•  Coopr installer script    •  Wiki documentation

•  Examples    •  Trouble tickets
•  Mailing lists

SOLVERS Open Source
Software

®
®
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Hedging Against Uncertainty:
A Modeling Language and Solver Library

You Plan Stu� Happens You Adjust More Stu� Happens

Multi-Stage Planning for 
Uncertain Environments
•  Explicitly capture recourse
•  Uncertainty modeling framework
•  Integrated solver strategies

What We Do:
•  Mixed decision variables

♦  Continuous
♦  Integer/Binary

•  General multi-stage 
•  Stochastic programming

♦  Expected value
♦  Conditional Value-at-Risk
♦  Scenario selection

•  Cost confidence intervals

How We Do It:
•  Deterministic equivalent
•  Scenario-based decomposition

♦  Progressive Hedging
♦   Customizable accelerators

•  Algebraic modeling via Pyomo
•  SMP and cluster parallelism
•  Integrated high-level language support
•  Multi-platform, unrestrictive license
•  Open source, actively supported by Sandia
•  Co-Managed by Sandia and COIN-OR

TO LEARN MORE VISIT > https://software.sandia.gov/trac/coopr/wiki/PySP

PySP: Stochastic Programming in Python

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. 



Stochastic Programming and High-Performance Computing

• Decomposition algorithms for solving multi-stage stochastic mixed-integer 
programs are “naturally” parallelizable

– L-shaped and Progressive Hedging are particularly amenable
• Practical issues arise as the number of scenarios grows

– Even the most modest branching processes in multi-stage decision 
environments lead to thousands to millions of scenarios

– MIP solve times are heterogeneous, leading to poor parallel efficiency
• Current capabilities in PySP:

– Scalability to order-thousand scenarios and processors
• In-progress efforts

– Asynchronous decomposition algorithms
– IBM Research Blue Gene deployment
– EC2 / Gurobi deployment

• Major deployment issue: MIP solver licensing to thousands of processors
– Mitigated in part by Gurobi EC2 deployment

Slide 15



Scenario Sampling: How Many is Enough?
• Discretization of the scenario tree is “standard” in stochastic programming

– Often, no mention of solution or objective stability
– Let alone rigorous statistical hypothesis-testing  of stability
– Don’t trust anyone who doesn’t show you a confidence interval

• Two general approaches in the literature
– Has the solution converged? (Sample Average Approximation)
– Has the objective converged? (Multiple Replication Procedure)

• Formal question we are concerned with
– What is the probability that   ’s objective function value is suboptimal 

by more than α%?

• Initial implementation available in PySP
– Preliminary results for various network expansion and design problems 

indicates that we are using  far too few samples
Slide 16
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Conclusions
• Multi-stage stochastic mixed-integer programs are a natural modeling paradigm 

for solving generation/transmission capacity expansion problems

• Solver technologies capable of solving realistic instances are emerging
– But many challenges remain, both in terms of research and deployment

• Sandia is developing software to address what we view as the challenges
– Frameworks to support rapid modeling and solver prototyping
– Scalable parallelization of decomposition strategies
– Rigorous quantification of uncertainty bounds on solution costs
– Open-source solutions

• Sandia is mandated to collaborate with and aid industry – not compete

• For more information:
– https://software.sandia.gov/trac/coopr/wiki/PySP -or- jwatson@sandia.gov
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