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Reliability of Power Systems

In recent years, the number of large blackouts have been on the rise. For examples:

June 2012 India (over 620 million people affected)
Sept. 2011 Southwest, USA (initiating event by loss of a 500kV line)

Growing complexity of power systems: distributed generations and significant generation
uncertainty

Systems operating closer to feasibility limits are more vulnerable to failures, due to natural
causes and/or intelligent adversaries.

Survivability: system’s ability to survive imminent disturbances (contingencies) without
interruption of customer service
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NERC Standard

North American Electric Reliability Corporation (NERC):

develop and enforce standards to ensure the reliability of the power systems in North
America

Transmission planners and planning coordinators:

prepare necessary performance assessments for their portion of the system under different
contingency conditions

ensure that system complies with approved NERC TPL standards
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NERC Standard

Transmission Planning Standard (TPL-001-1): system performance requirements under both nor-
mal and various contingency conditions

No contingencies (Category A)

Events resulting in the loss of a single system element (Category B)

Event(s) resulting in the loss of two or more elements (Category C)

Extreme event resulting in two or more elements removed or cascading out of service
(Category D)
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NERC Standard

TPL-001-1 standards

Category System Stable Loss of Demand Cascading Outages
N-0 Yes No No
N-1 Yes No No
N-k Yes Planned/Controlled No
N-1-1 Yes Planned/Controlled No

Category B events: loss of a single system component

N-1 contingency

Category C events: loss of two or more components

(near-)simultaneous losses: N-k (k ≥ 2) contingency
Consecutive losses: N-1-1 contingency
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Contingency Analysis

Contingency analysis: a key function in the Energy Management System

N-1 contingency analysis:

system to operate under normal conditions (per TPL-001-1)

not sufficient to model/evaluate vulnerabilities of power grids

N-1 reliability analysis: UC with transmission switching (Hedman et al. 2010)
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Contingency Analysis

Contingency analysis: a key function in the Energy Management System

N-k contingency analysis:

a substantial computational burden for analysis,
∑k

i=1

(N
i

)
vulnerability analysis (Pinar et al. 2010, Bienstock et al. 2010)

power flow (Salmeron et al. 2004, Arroya 2010, Fan et al. 2010)

survivable power system design (Chen et al. 2012)

contingency-constrained unit commitment (Chen et al. 2013)

robust unit commitment (Street et al. 2011, Wang et al. 2012)
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Contingency Analysis

Contingency analysis: a key function in the Energy Management System

N-1-1 contingency analysis:

a category B event followed by a category C event per TPL-001-1

simulation analysis: PowerWorld, Mathwork, Siemens Energy (2011), Chatterjee et al.
(2010) for midwest ISO

optimal power flow (Fan et al. 2012)

(SNL & U. AZ) N-1-1 Contingency-Constrained Grid Op. June 25, 2013 4 / 27



N-1-1 Contingency-Constrained Unit Commitment

Baseline UC: find least cost on/off schedule of generating units and economic dispatch
(DCOPF) to meet electrical loads

N-1-1 CCUC: find expected, least-cost on/off schedule of generating units, economic
dispatch (DCOPF) such that a feasible recourse DC PF exist for any N-1-1 contingency
state

Modeled as a three-stage stochastic mixed-integer program (SMIP)
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Time periods

given a N-1-1 contingency state c

planning horizon T

tca , tcb , times of the primary and secondary contingencies, respectively
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Three-Stage N-1-1 UC Model

Three-stage model/Nested Benders decomposition
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Nomenclatures

Indices and parameters:

Planning horizon, T = {1, · · · ,T}

Power system (i ∈ N, g ∈ G , e ∈ E):

T u0
g ,T d0

g , initial online and offline

T u
g ,T

d
g , minimum online and offline

Decision variables:

x tg ∈ {0, 1}, generator on/off
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Three-Stage Formulation: 1st stage (RUC)

objective: minimize startup, shutdown costs, and no-contingency state generation cost

constraints:

minimum online/offline requirements (initial periods)
minimum online/offline requirements
startup/shutdown costs

variables: x tg ∈ {0, 1} ∀, g ∈ G , t ∈ T

UC formulation based on Carrion and Arroyo (2006) and Wu and Shahidehpour (2010)
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Nomenclatures

Indices and parameters:

Power system (i ∈ N, g ∈ G , e ∈ E):

ie , je , tail and head bus of line e
Dt

i , demand

Pg , Pg , generation bounds

Ru
g ,R

d
g , R̄u

g , R̄
d
g , ramp rates

Be ,Fe , susceptance and capacity

Decision variables:

ptg , f
t
e , θ

t
i , no-contingency state generation level, flow, and voltage phase angle
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Three-Stage Formulation: 2nd stage (NSP)

min
∑
t∈T

∑
g∈G

Cp
g (ptg )

s.t.
∑
g∈Gi

ptg +
∑
e∈E.i

f te −
∑
e∈Ei.

f te = Dt
i , ∀i , t

Be(θtie − θ
t
je

)− f te = 0, ∀e, t

−Fe ≤ f te ≤ Fe , ∀e, t

Pg x̃
t
g ≤ ptg ≤ Pg x̃ tg , ∀g , t

ptg − ps,t−1
g ≤ Ru

g x̃
t−1
g + R̄u

g (x̃ tg − x̃ t−1
g )

+Pg (1− x̃ tg ), ∀g , t

ps,t−1
g − ptg ≤ Rd

g x̃
t
g + R̄d

g (x̃ t−1
g − x̃ tg )

+Pg (1− x̃ t−1
g ), ∀g , t

minimize generation cost

power balance at each bus

power flow w.r.t. phase angles

line capacity bounds

generation capacity bounds

generation ramp-up

generation ramp-down
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Nomenclatures

Indices and parameters:

Power system (i ∈ N, g ∈ G , e ∈ E):

C, set of all N-1-1 contingencies (indexed by c)
d̃ct
e , d̃

ct
g , contingency element indicators

tca , tcb , times of the primary and secondary contingency for c, respectively
ṽ ct

2 , in secondary contingency indicator, ṽ ct
2 equal 1 for all t > tb and 0 otherwise

oe , allowable line overload factor during secondary contingency state

Decision variables:

pctg , f
ct
e , θcti , q

ct
i , contingency state c generation level, flow, voltage phase angle,

loss-of-load
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N-1-1 contingency set (C)

refers to the loss of a system element followed by a loss of another system element in a
subsequent time period

in a given time period at most one element in G ∪ E can fail

there are
(T

2

)
= T (T−1)

2
possible pairs of periods for primary and secondary losses

|G |+ |E | possible losses for primary contingency

|G |+ |E | − 1 possible losses for secondary contingency

|C| = T (T−1)
2

(|G |+ |E |)(|G |+ |E | − 1)

number of N-2 contingencies = (|G |+|E |)(|G |+|E |−1)
2
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Three-Stage Formulation: 3rd stage (CSP)

Recourse operations in contingency state c, for all c ∈ C and t = tca , · · · ,T ,

∑
g∈Gi

pctg +
∑

e∈E.i f
ct
e −

∑
e∈Ei. f

ct
e + qcti =

Dt
i , ∀i , t

Be(θctie − θ
ct
je

)(1−
∑t

t′=tca
d̃ct′
e )− f cte = 0, ∀e, t

−f cte ≤ Fe(1−
∑t

t′=tca
d̃ct′
e )(1 + oe ṽ ct

2 ), ∀e, t

f cte ≤ Fe(1−
∑t

t′=tca
d̃ct′
e )(1 + oe ṽ ct

2 ), ∀e, t

−pctg ≤ Pg x̃
t
g (1−

∑t
t′=tca

d̃ct′
g ), ∀g , t

pctg ≤ Pg x̃ tg (1−
∑t

t′=tca
d̃ct′
g ), ∀g , t

power balance at each bus

power flow w.r.t. phase angles

line capacity bounds

generation capacity bounds
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Three-Stage Formulation: 3rd stage (CSP)

pctg − pc,t−1
g ≤ Ru

g x̃
t−1
g + R̄u

g (x̃ tg − x̃ t−1
g )

+Pg (1− x̃ tg ), ∀g , t

pc,t−1
g (1−

∑t
t′=tca

d̃ct′
g )− pctg ≤

Rd
g x̃

t
g + R̄d

g (x̃ t−1
g − x̃ tg ) + Pg (1− x̃ t−1

g ), ∀g , t

0 ≤ qcti ≤ Dt
i , ∀i , t∑

i∈V qcti ≤ (ε
∑

i∈V Dt
i )ṽ ct

2 , ∀i , t

p
c,tca−1
g = p̃

tca−1
g , ∀g ∈ G |d̃ tca

g = 0

generation ramp-up

generation ramp-down

load shedding threshold

non-anticipativity

Dualize constraints above to form a maximization problem. If infeasible the dual is unbounded.
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Optimality and Feasibility Cuts

If NSP(x̃) is feasible, an optimality cut can be generated.

[o-cut] : δT x + γ1 ≤ Q

If NSP(x̃) is infeasible, the dual problem is unbounded and a feasibility cut can be generated.

[f-cut1] : δT x + γ1 ≤ 0

If CSP(x̃ , p̃, c) is infeasible, the dual problem is unbounded and a feasibility cut can be
generated.

[f-cut2] : αTp + γ2 ≤ 0
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Power System Inhibition Problem - PSIP(x̃ , p̃, ta, tb)

For t = ta, · · · ,T ,

max
dta ,dtb

min
f ,p,q,r,s,θ

∑
t

∑
g

r tg +
∑
t

st

s.t.
∑

e d
ta
e +

∑
g d ta

g = 1∑
e d

tb
e +

∑
g d

tb
g = 1∑

t d
t
e = 1, ∀e∑

t d
t
g = 1, ∀g∑

g∈Gi
(ptg − r tg ) +

∑
e∈E.i f

t
e −

∑
e∈Ei. f

t
e +qti =

Dt
i , ∀i , t

Be(θtie − θ
t
je

)(1−
∑t

t′=ta
d t′
e )− f te = 0, ∀e, t

−f te ≤ Fe(1−
∑t

t′=ta
d t′
e )(1 + oe ṽ t

2 ), ∀e, t

f te ≤ Fe(1−
∑t

t′=ta
d t′
e )(1 + oe ṽ t

2 ), ∀e, t

minimize load and generation shedding
above allowable threshold

contingency constraints

power balance at each bus

power flow w.r.t. phase angles

line capacity bounds
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Power System Inhibition Problem (PSIP)

−ptg ≤ Pg x̃
t
g (1−

∑t
t′=ta

d t′
g ), ∀g , t

ptg ≤ Pg x̃ tg (1−
∑t

t′=ta
d t′
g ), ∀g , t

ptg − pt−1
g ≤ Ru

g x̃
t−1
g + R̄u

g (x̃ tg − x̃ t−1
g )

+Pg (1− x̃ tg ), ∀g , t

pt−1
g − ptg ≤ Rd

g x̃
t
g + R̄d

g (x̃ t−1
g − x̃ tg )

+Pg (1− x̃ t−1
g ), ∀g , t

0 ≤ qti ≤ Dt
i , ∀i , t∑

i∈V qti − (ε
∑

i∈V Dt
i )ṽ t

2 ≤ st , ∀i , t
r tg ≤ ptg , ∀g , t

pta−1
g = p̃ta−1

g (1− d ta
g ), ∀g

d t
e ∈ {0, 1}, d t

g ∈ {0, 1}, ∀t ∈ {ta, tb}
d t
e = 0, d t

g = 0, ∀t /∈ {ta, tb}

ptg ≥ 0, r tg ≥ 0, st ≥ 0, ∀g , t

generation capacity bounds

generation ramp-up

generation ramp-down

load and generation shedding

non-anticipativity

integrality restrictions

non-negativity restrictions
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PSIP Reformulation

PSIP is a bilevel program and cannot be solved directly.

PSIP can reformulated as a MILP

bilinear terms in the objective
product of d ta , d tb and continuous lower level variables
mixed-integer linear reformulation refer to as PSIP-M
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Cutting Plane Algorithm 2 (CPA2)

0: Initialize LB, UB
1: Solve RUC
2: If infeasible, EXIT
3: Else, update LB and solutions x̃ , Q̃
4: Solve a NSP(x̃),
5: If infeasible, add [f-cut1] to RUC and go to (1)
6: Else, let p̃ be the optimal generation schedule and z be the ofv
7: For each (ta, tb) pairs, solve PSIP-M(x̃ , p̃, ta, tb) and let w be the ofv
8: If w > 0, add [f-cut2] to NSP(x̃) and go to (4)
9: If z > Q, add [o-cut] to RUC
10: Update UB
11: If (UB−LB< ε), EXIT
12: Else, go to (1)
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CPA2 Discussion

At each iteration of CPA2:

Instead of solving |C| linear programs (CSP)

For c ∈ C, solve CSP(x̃ , p̃, c)

We now solve 1
2

(T )(T − 1) mixed-integer linear programs (PSIP-M)

For each (ta, tb) pairs, solve PSIP-M(x̃ , p̃, ta, tb)

Number of contingencies identified is extremely small
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Preliminary Study Setup

Test Systems: modified IEEE-24 and RTS-96

Time periods: T = 6

Implementation C++, CPLEX 12.1 and Concert 2.9

ε values of 0.08, and 0.05 for IEEE-24 and RTS-96, respectively

Line overload factor oe = 0.25
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Preliminary Observations (1 of 3)

Cost comparison using N-0 as baseline
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Modest increases in costs

Small number of contingencies identified (3 to 7)

Contingencies mostly correspond to failures in consecutive periods
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Preliminary Observations (2 of 3)

Runtime comparison (min.)
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Order of magnitude increase in runtimes from N-2 to N-1-1

Scalability is an issue (PSIP for each time-period pairs)
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Preliminary Observations (3 of 3)

detailed relations between N-2 and N-1-1?

Need more comprehensive studies on larger (and more realistic) systems to draw
conclusion
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Current and Next Steps

Model refinements

enforcing non-anticipativity between primary and secondary contingency

Algorithmic refinements

HPC implementation

Further testing and analysis

Larger and more realistic instances
Longer time periods (e.g. T = 8, 12, 24)
Rolling horizons
N-2 and N-1-1?
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Thank you

Neng Fan
nfan@email.arizona.edu
University of Arizona, Tucson, AZ
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