PRELIMINARY ASSESSMENT OF FISH ENTRAINMENT AT HYDROPOWER PROJECTS

A Report on Studies and Protective Measures

Volume 2: Appendices

Federal Energy Regulatory Commission
Office of Hydropower Licensing
Washington, DC
Paper No. DPR-10
December 1994

CONTENTS

• *VOLUME 2* •

APPENDICES

Appendix 1	Listing of Sites Considered for Inclusion in the Database
Appendix 2	Explanation of Data Fields
Appendix 3	Entrainment Database
·.	3.1 Numerical Portion of Database
Appendix 4	Detailed Statistical Results and Plots of Exploratory Regression Analyses
Appendix 5	Detailed Statistical Results of Supplemental Statistical Analyses A5-

APPENDIX 1 LISTING OF SITES CONSIDERED FOR INCLUSION IN THE DATABASE

APPENDIX 1- SITES IDENTIFIED AS POTENTIALLY HAVING ENTRAINMENT STUDIES AVAILABLE

PROJECT NAME/ FERC NO. (STATE)	REPORT STATUS (ACQUIRED, PARTY REQUESTED FROM OR DUE DATE)	SUITABLE FOR INCLUSION IN DATABASE (Y/N)	EXPLANATION IF NOT SUITABLE
Station 26 2584 (NY)	acquired	Y	
Little Falls 3509 (NY)	Λ	N	very limited netting to evaluate trash rack screen
Beaver Falls 3451 (PA)	acquired	Y	
Ithaca Falls 6744 (NY)		N	entrainment study not confirmed
Little Falls 9194 (NJ)	no entrainment studies; screen being installed	N	no entrainment studies conducted
Youghiogheny Lake 3623 (PA)	acquired	Y	
Dam No. 4 (WV)	acquired	Y	·
Luray/Newport 2425 (VA)	acquired	N	no entrainment studies conducted
Shenandoah 2509 (VA)	acquired	N	no entrainment studies conducted
Warren 2391 (VA)	acquired	N	no entrainment studies conducted

99 Islands 2331 (SC)	acquired	Y	
Gaston Shoals 2322 (SC)	acquired	Y	
Saluda 2406 (SC)	acquired	Y	
Hollidays Bridges 2465 (SC)	acquired	Y	
Buzzards Roost 1267 (SC)	acquired	Y	
Abbeville 11286 (SC)	acquired	Y	
Tower & Kleber 10615 (MI)	acquired	Y	
Moores Park 10684 (MI)	acquired	Y	
Prickett 2402 (MI)	acquired	Y	
Escanaba 2506 (MI)	acquired	Y	
French Landing 9951 (MI)	acquired	Y	
Alcona 2447 (MI)	acquired	Y	
Five Channels 2453 (MI)	acquired	Y	
Foote 2436 (MI)	acquired	Y	

Pine 2486-002 (WI)	acquired	N	only 3 months sampled before barrier net installed; study not designed to address entrainment abundance; agencies suggested not including this study in database
Brule 2431 (WI)	acquired	Y	
Thornapple 2475 (WI)	acquired	Y	
Crowley 2473-002 (WI)	acquired	Y	
Rothschild 2212 (WI)	acquired	Y	
Wisc. Riv. Div. 2590 (WI)	acquired	Y	
Centralia 2255 (WI)	acquired	Y	
Park Mill 2744 (WI)	acquired	Y	
White Rapids 2357 (WI)	acquired	Y	
Little Quinnsec 2356 (WI)	only six months of data	N	data included in study report from August 1990 to Feb. 1991; annual entrainment cannot be estimated because data from key months are missing, monthly data of limited usefulness
Chalk Hill 2394 (WI)	entrainment study not done	N	turbine mortality study only; entrainment abundance to be extrapolated from White Rapids data
St. Cloud 4108 (MN)		N	entrainment of ichthyoplankton only; focus of this entrainment review project is juvenile and older fish

Tungstar 7267 (CA)	discussed with federal officials; existence of study questionable	N	entrainment study not confirmed
Graeagle 10505 (CA)	infiltration gallery intake	N	no entrainment studies conducted
Bishop Creek 1394 (CA)	acquired	N	hydroacoustics not effective in penstock; partial flow tailrace netting collected only 12 fish in 2000 hrs
Haas/King River 1988 (CA)	acquired	N	no entrainment studies done
Leaburg 2496 (OR)	no entrainment studies	N	only turbine mortality studies in mid-1950s
Walterville 2510 (OR)	no entrainment studies	N	only turbine mortality studies in mid-1950s
Blue River 3109 (OR)	hydro plant not yet constructed	N	no entrainment studies done
Bull Run 0477 (OR)	entrainment protection installed	N	no entrainment studies done
Condit 2342 (WA)	entrainment protection installed	N	no entrainment studies done
Wynoochee Dam 6482 (WA)	discussed with licensee's rep. (Harza Northwest)	N	no hydro project, yet; studies have been done to evaluate mortality due to outlet structure
Elwha 2683 (WA)	acquired	possibly	studies pertain to anadromous salmon species only; site geographically isolated from rest of sites in database
Snoqualmie Falls 2494 (WA)	acquired	possibly	represents plants with difficult sampling config.; results not likely to be comparable to other sites in database
Yelm 10703 (WA)	discussed with federal officials; existence of study is questionable	N	entrainment study not confirmed

APPENDIX 2 EXPLANATION OF DATA FIELDS

APPENDIX 2- DATABASE FIELD EXPLANATIONS

DATA FIELDS (COLUMN HEADINGS)

COMMENTS ON NOTATION

A. GEOGRAPHICAL INFORMATION

- 1. PLANT NAME
- 2. FERC NO.
- 3. RIVER NAME
- 4. RIVER MILE
- 5. AVG RIVER FLOW (CFS)
- 6. WATERSHED
- 7. COUNTY
- 8. STATE

B. RESERVOIR CHARACTERISTICS

- 1. SURFACE SIZE (ACRES)
- 2. TOTAL STORAGE (AC-FT)
- 3. USABLE STORAGE (AC-FT)
- 4. THROUGH PLANT FLUSHING RATE (DAYS)
- 5. LENGTH (MILES)
- 6. MAX. WIDTH (FT)

Normally, the distance from the mouth of the river to the project, unless the local convention is to do otherwise

When not indicated in the material provided, S & W has used the most recent in-house USGS water yearbook available; more recent average flow figures may be available from licensees

Total storage/through-plant hydraulic capacity (this may relate more to entrainment rates than true flushing rate)

D. ENTRAINMENT DATA SOURCE/MONITORING METHODS

1. DATA SOURCE Author and year. When a firm was subcontracted to do netting or hydroacoustic sampling, that

firm is indicated parenthetically (abbreviations used are as follows: BWEC= Barnes-Williams

Environmental Consultants, BS = Biosonics)

2. MONITORING METHOD Net, HA (Hydroacoustics), or both

3. NET TYPE FITR=Full Flow Tailrace Net, PFTR=Partial Flow Tailrace Net, PFTG=Partial Flow Turbine

Gallery Net, PFFB=Partial Flow Forebay Net

4. UNITS SAMPLED # Sampled of # of total

5. NO. OF MONTHS SAMPLED BY NET

6. NETTING HOURS PER MONTH Give range if applicable

7. NET SAMPLING EFFICIENCY (%) Give range of values if tested with fish releases unless only an average is presented; if efficiency

determined by through-turbine releases (TTR), values should be placed in the column labeled TTR. If efficiency determined by direct net releases (NR), values should be placed in the column labeled

NR

8. ENTRAINMENT ESTIMATE ADJUSTED FOR SAMPLING EFFICIENCY (Y/N)

This is usually not done when net data is only designed to provide species composition and length frequency information

9. ENTRAINMENT ESTIMATED SEPARATELY

BY UNIT (Y/N)

10.TURBINE MORTALITY STUDIED (Y/N)

E. WATER QUALITY DATA AVAILABLE

1. MONTHLY TEMP. DATA AVAIL (Y/N) Indicates availability for future analysis

2. MONTHLY FOREBAY D.O. AVAIL (Y/N) Indicates availability for future analysis

3. MONTHLY WATER CLARITY DATA Indicates availability for future analysis; usually reported as Secchi disc readings.

AVAIL (Y/N)

H. MONTHLY AND ANNUAL ENTRAINMENT RATE BY SPECIES

- 1. BASIS (NET OR HYDROACOUSTIC)
- 2. SPECIES NAME
- 3. AVERAGE SIZE (IN) and
- 4. MEDIAN SIZE (IN)
- 5. % OF TOTAL PLANT CAPACITY REPRESENTED
- 6. JAN (FISH PER HOUR)

20.SPECIES PERCENTAGE OF TOTAL ENTRAINED

When net derived relative abundance values are applied to hydroacoustic estimates of total abundance, "both" is indicated.

Individual species followed by total for all species. Total number of fish collected by net is indicated next to total when available.

Average (mean) size preferable but if not readily available, include the median or mode (mode is preferable to median, but must be specified in explanatory comments section).

When possible, entrainment rates are presented for the entire plant using assumptions made by licensee. When this is not appropriate, the proportion of the total plant hydraulic capacity represented by the entrainment estimate is indicated.

When monthly entrainment as total number of fish is presented by licensee, hourly rate usually calculated by dividing the total number of fish by the number of hours in the month.

Unless provided by licensee, species specific annual rates derived by apportioning the total annual rate by the relative abundance presented in column H20. When the hydroacoustically derived values are considered the best estimate of total entrainment, the relative abundance was applied to the hydroacoustically derived total entrainment values. In such cases, monthly entrainment rates are still those derived from netting data unless otherwise noted. When total annual number provided by licensee, total annual rate derived by dividing the total number by the number of hours in a year. Relative abundance of entrained fish unless only data available is for collected fish (the two values are usually similar if collections taken during representative sampling periods); species comprising 1.0% or more of the total catch are typically listed.

APPENDIX 3

ENTRAINMENT DATABASE

- 3.1 Numerical Portion of Database
- 3.2 Narrative Portion of Database

A. Geographical Information								B. Resen	voir Chara	cteristics		·····	
A1	A2	A3	A4	A5	A6	A7	A8	B1	B2	B3	B4	B5	B6
Plant Marne	FERC no.	River Name	River Mile	Avg River Row (cfs)	Watershed	County	State	Surface Size (acres)	Total Storage (ac-ft)	Usable Storage (ac-ft)	Through Plant Flushing Rate (days)	Length (miles)	Mex. Width (ft)
Alcona	2447	Au Sable	38		Au Sable	Alcona	MI	1075	25000	1470	3.9	3.7	
Foote	2436	Au Sable	12	1339	Au Sable	losca	МІ	1800	30000	1824	3.7	5.7	
Cooke	2450	Au Sable	22	1320	Au Sable	losca	MI	1800	30000	1743	4.2	7.6	
Loud	2449	Au Sable	33	1289	Au Sable	losca	МІ	790	12600	1056	2.4	4.2	
Mio	2448	Au Sable	73	988	Au Sable	Oscoda	MI	880	12000	389	2.2	5.5	
Five Channels	2453	Au Sable	29	1298	Au Sable	losca	MI	250	4000	124	0.67	2.8	
Croton	2468	Muskegon	47	1872	Muskegon	Neweygo	MI	1209	21932	1181	3	2.2/4.3	2500/3200
Rogers	2451	Muskegon	89	1343	Muskegon	Mecoste	MI	810	10000	300	2.1	2.5	2100
Hardy	2452	Muskegon	58	1459	Muskegon	Mec./Neweygo	MI	3902	134973	5007	15.1	17.6	6300
Moores Park	10684	Grand		822	Grand	Ingham	MI	240	2000	2000	0.84	8.2	
Tower	10615	Black		270	Black	Cheboygan	Mi	102	820	NA	0.87	0.9	
Kleber	10815	Black		270	Black	Cheboygan	MI	270	3000	NA	3.8	0.9	
Buchanan	2551	St Joseph	33	3636	St. Joseph	Berrien	MI	423	3895	NA	0.52	8	1300
Constantine	10861	St Joseph	103	1260	St Joseph	St Joseph	MI	525		NA		5.8	1500
Prickett	2402	Sturgeon	44	421	Portage	Baraga	MI	773	13687	4500	10.8	3.5	2970
Escanaba Dam 1	2508	Escanaba	1	968.8	Escanaba	Marquette\Delta	MI	75	375		0.18	0.6	1000
Escenaba Dam 3	2506	Escanaba	3	902.8	Escanaba	Marquette\Delta	MI	182	1100		0.44	1.3	1400
French Landing	9951	Huron				Wayne	MI	1270					
Lock & Dam #2	4306	Mississippi	26	9635	Upper Mississippi	Dakota	MN	11810	4700				
Park Mill	2744	Menominee	3.6	3400	Menominee	Marinette	WI	539	3788	NA		4	2800
White Rapids	2357	Menominee	55	3080	Menominee	Marinette	WI	435	5155	415	0.5	2.3	580
Brule	2431	Brule	2	550	Menominee	Florence	WI	545	8880	530	3.2	5.2	340
Thornapple	2475	Flambeau	8	1860	Flambeau	Rusk	WI	295	1000	285	0.36	4	600
Crowley	2473	North Fork Flambeau	82	795	Flaimbeau	Price	WI	422	3539	0	1.21		

A.	Geographical Information								B. Resen	oir Chara	cteristics			
L	A1	A2	A3	A4	A5	A6	A7	8A	B 1	82	B 3	B4	B5	B6
	Plant Name	FERC no.	ñver Neme	River Mile	Avg River Row (cfs)	Watershed	County	State	Surface Size (acres)	Total Storage (ac-ft)	Usable Storage (ac-ft)	Through Plent Flushing Rate (days)	Langth (miles)	Mex. Width (ft)
	Station 28							NY	90	2000				350

A3.1-3 DPC 1993

	C. Plan	t Descrip	tion										D. Entreinment Data	Source	/Monitor	ing Met	hods			-				
***	C1	C2	C3	C4	C5	C6	C7	C8	CS	C10	C11	C12	C13	D1	D2	D3	D4	D5	D6	D7		08	9	10
demo	Dam Height (ft)	Total Hydraulic Capacity (cfs)	ity (MW)		Operating Mode	Ructuation Limits (ft)	Intake Type (f. bay, p. canal, i. tower)	Orientation To Row (per, par, ang)	Depth to Top of Intake (ft)	Depth to Intake Roor (ft)	Tresh Rack Area (sq ft)	at Max Row (fps)	Tresh Rack Spacing (in)	Data Source (Author and Year)	Monitoring Method (Net, HA or both)	Net Type (FFTR, PFTR, PFTG)		No. of Months Sampled by Net	Netting Hours Per Month	Net Sempling Efficiency (%) TTR	Net Sempling Efficiency (%) NR	(A/M)		Turbine Mortality Studied (Y/N)
Pient Neme	Dem H	Total P	Total (No. of Units	Operat	Puctue	Intake	Oriente	Depth	Depth	Trash	Avg Velocity	Treath	Dets S	Monito	Net Ty	Vrite S	10.0 0	Nettin	Net Se	Net Se	Ent. Es	E) [2]	igh.
Upper	11	720	0.8	2	ROR	0	PC	Per	0	13.6	560	2	1.75	BWEC 93	HA	NA	2 of 2	A	NA	NA		NA	N	N
Lower	30.7	930	1.2	3	ROR	0	FB	Per	0	12.2	1104	1.7	3.5	BWEC 93	НА		3 of 3	A	NA	NA		NA	N	N
Pixley	13	675	0.98	2	ROR	0	FB	Per	0	16	1397	1.5	1.75	BWEC 93	НА		2 of 2	A	NA	NA		NA	N	N
Rothschild	29	3300	3.64	7	ROR	0	FB	Per	0	15		1.5/2.8	1.375	D+M 93	Net	FFTR	2 of 7	12	24-98		41-95	γ	Y	γ
Wisconsin R.D.	29	5120	1.8	10	ROR	0	FB	Per	0	19	1	.4/2.6	2.25/4.125	Harza 93	Net	FFTR	of 10	9	24-48		27-81	Y	N	Y.
Centralia	23	3640	3.2	в	ROR	0	PC	Per	0	14.2	2	2.1/2.2	3.5/5.6	Harza 92	Net	FFTR	1 of 8	11	24-48		27-82	Y	N	Y
Shawano	18.5	835	0.7	1	ROR	0	FB	Per	3	16	603		5	BWEC 92	Both	FFTR	1 of 1	11	48-96		86	Y	A	Y
King Mill	NA		2.05	2	ROR	NA	FB	Par				1.48	2	NAI 92	Net	PFTR	2 of 2	8	72-120			Υ	2	Y
99 Islands	88	4498	18	8	PK	2	FB	Ang	7.75	28.25		5.8		Duke Power 91	Both	FFTR	1 of 6	9	48	NG		Y	N	N
Gaston Shoals	73	2685	9.1	3	PK	2	FB	Per	13.8	28.8				Duke Power 91	Both	FFTR	1 of 3	В	48	NG		Y	N	N
Saluda	55	800	2.4	4	PK	1	FB	Per	13.2	23.2		7.2		Duke Power 91	Both	FFTR	1 of 4	8	98	NG		Y	N	N
Holliday's Bridge	35	1610	3.5	4	PK	1	PC	Per	18.6	27.6		7.2		Duke Power 91	Both	FFTR	1 of 4	5	98	NG		Y	N	N
Buzzard's Roost	87	4000	15	3	₽K	20	FB	Per	3	38.6				Duke Power 92	Both	FFTR	1 of 3	12	72-98	NG		N	N	Y
Abbeville	80	390	2.8	2	PK	1.5-8	FB	Per]	49.2	1181		2.8	RW Beck 92	Net	PFTR	1 of 2	7	98	NG		N	Y	N
Hawks Nest	58	10000	102	4	ROR	0	FB	Per	7	41	5610	1.8	3.2	KS 90 (BWEC)	Both	PFTR	4 of 4	12	48-98	NG		N	N	N
Dam # 4 (1986)	18.5	1120	1.1	2	ROR	. 0	FB	Per	3	12	586	0.95	1.25	EEM 88	Net	FFTR	1 of 2	7	151-471	83-80		Y	Y	Υ
Dam # 4 (1992)	18.5	1849	2.1	3	ROR	0	FB	Per	3	12	586	1.24	1.25	EEM 93	Net	FFTR	1 of 3	11	72-528	92		Y	γ	γ
Millville	12	2220	2.84	3	ROR	0	PC	Per	3	16	780	1.09	2.5	EEM,92,91,90	Net	FFTR	1 of 3	12	24-589	79		Y	γ	γ
														86										
																								_
																		L					Ц	L
Greenup L+D	30	35598	89	3	ROR	1		Per	32	72		6∙10.	4	CH2MHILL88(BS)	Both	PFTG	1 of 3	3	14-25	NG		N	Υ	N
Beaver Falls	17.2	4400	5	2	ROR	0	FB						5.5	KS 92	Net	FFTR	1 of 2	В	24-72	94-97		N	N	Y
Youghiogheny	177	1800	12.2	2	ROR	20	FB	Ang	30-50	100-120	2295	0.7	10	RMC 92	Net	FFTR	2 of 2	12	30		48-100	Y		Y

	E. Water o	uelity Date	Available	F. Average	• Monthly ri	ver Flow (c	fs) During S	tudy				•				
	E1	E2		F1	F2			F5	F6	F7	F8	F9	F10	F11	F12	F13
			ino													
Plant Name	Monthly Temp. Data Avail (Y/N)	Monthly Forebay D. O. Avail (Y/N)	Monthly Water Clanty Date Avail (YIN)	During Sempling (DS) or Total Monthly Avg (TMA)		Feb	Mer	Apr	May	nul	bit	Aug	Sept	0et	Nov	Dec
Alcona	N		N													
Foote	N		N													
Cooke	N	N	N													
Loud	N		N													
Mio	N		N													
Five Channels	N															
Croton	N															{
Rogers	N	N	N													
Hardy	N	N	N													
Moores Park	Y	Y	ΥΥ	TMA	528	646	1085	1098	736	457	312	220	218	280	380	496
Tower	Υ Υ	Υ	Y													
Kleber	Y	_						i					L		l	
Buchanan	γ			TMA			8864	6342	6973	4568	3877	3263	3175	6049	5797	7366
Constantine	Y															
Prickett	γ	N	N													
Escanaba Dam 1	Υ	γ	Y	DS			ļ!	885	2505	670	460		352	391		
Escanaba Dam 3	γ		Y	DS			1178	892	1850	876	329	346	308	808	617	271
French Landing	N		N N													
Lock & Dam #2	Υ		N													
Perk Mill	Υ		γ	TMA	1883	2098	3840	1878	4689	3977	1748	1852	2558	2556	2104	2117
White Repids	Υ		N	TMA	1508	1821	3135	5574	4287	3244	2355	1421	1859	1697	2401	2411
Brule	γ	N	N	TMA	242	255	483	921	679	484	349	274	308	417	484	467
Thornapple	Y		Y	DS	838	678	2248	4230	3064	1328	986	784	2936	2949	1659	1111
Crowley	Y	N	Y.				<u> </u>									

	E. Water q	uality Date	Available	F. Average	B Monthly r	iver Flow (c	fe) During S	itudy								
	E1	E2	E3	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13
Plent Neme	Monthly Temp. Data Avai (Y/N	Monthly Forebay D. D. Avail (Y/N)	Monthly Water Clanty Data Avail (Y)N	During Sempling (DS) or Total Monthly Avg (TMA)	_	Fab	Mar	Apr	May	Jan	jul.	Aug	Sapt	Oct	Nov	Dec
Station 26 1990	N	N	N	TMA	3152	7378	3981	5367	3645	1519	971	679	1052	4085		
Station 26 1989	N	N	N	TMA						5844	2143	722	1037	1148	1855	741

	G. Avere	ge Plant Flow	v (cfs) During	Study			*******						
	G1	G2	G3	G4	G5	G8	G7	G8	G9	G10	G11	G12	G13
Plant Name	During Sampling (DS) or Total Monthly Aug (TMA)	ua-p	£	Mar	Apr	Mey	Jūn	Jul	Aug	Sept	Oct	New	Dec
Upper													
Lower									-				
Pixley									-				
Rothschild													
Wisconsin River Division	DS		NS	NS	2300	2129	2087	2350	2280	2267	3140	2138	NS
Centralia	DS	3602	3841	3805	3675	3650	3538	3338	3108	2823	3010		3560
Shawano													
King Mill	TMA			811	882	948	688	887	852		872	836	
99 Islands													
Gaston Shoals				<u>. </u>								i	
Saluda													
Holliday's Bridge													
Buzzard's Roost													
Abbeville													
Hawk's Nest		8930	8685	8908	9034	8446	4906	3810	5251	5498	7723	7447	5511
Dam # 4 (1986)	DS				1086	1095	1093	1047	969	916			
Dam # 4 (1992)	DS		1171	1480	1445	1030	682	670	888	656	854	844	662
Millville 91	DS	627	646	233	1328	1188	525	675	570	471	243	238	438
Millville 90	DS	1275	1394	1388	1348	1318	1092	900	432				600
Millville 89	DS									1182	1569	1311	1115
Millville 86	DS						715	287	313	265			
Greenup L + D	DS				35375			34175			35400		
Beaver Falls	DS	1285	1517	1870		1273	793	2290	2574				
Youghiogheny	DS	605	518	597	1430	428	386	370	481	559	410	420	480

	H. Mo	nthly end Annual Entrainment	Rate b	y Speci	ies									•		I				
	H1	H2	НЗ	H4	H5	H6	H7	Н8	H9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20
Plant Name	Basis (Net or Hydroacoustics)	Species Name	Average Size (in)	Median Size (m)	% of Total Plant Capacity Represented	Jan (fish per hour)	Feb	Mar	Apr	May	unç	jer	Aug	Sept	סכנ	AON	рес	Total Annual (fish/hour)	Total Annual (number)	Species Percentage of Total Entrained
Alcona	N	Rock bass	5.1		100	0.00	0.00	0.00	0.71	1.90	2.64	7.00	1.28	2.59	0.94	0.00	0.00	2.72	23844	
Alcona	N	White sucker	14.9		100	0.00	0.00	0.00	12.20	8.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.21	19345	21.5
Alcona	N	White sucker	11.1		100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.31	1.01	0.00			
Alcona	N	Bluegill		6.0	100	0.00	0.00	0.00	0.00	0.00	3.52	0.38	1.92	1.41	0.00	0.34	0.00	1.27	11157	12.4
Alcona	N	Walleye			100	0.00	0.00	0.00	2.85	0.63	0.44	1.16	0.64	0.00	1.25	0.00	0.00	1.10	9628	10.7
Alcona	N	Yellow perch			100	0.00	0.00	0.00	4.30	0.00	0.88	0.00	0.00	0.00	0.31	0.67	0.00	0.99	8638	9.6
Alcona	N	Spotteil shiner			100	0.00	0.00	0.00	1.78	0.00	1.36	0.38	0.00	0.23	0.00	0.00	0.00	0.58	5039	5.6
Alcona	N	Smallmouth bass			100	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.64	0.94	0.00	0.00	0.00	0.40	3509	3.9
Alcone	N	Black crappie			100	0.00	0.00	0.00	0.37	0.00	0.00	0.00	0.00	0.23	0.00	0.34	0.00	0.17	1530	1.7
Alcona	N	Sand shiner			100	0.00	0.00	0.00	1.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.17	1530	1.7
Alcona	N	Rainbow trout			100	0.00	0.00	0.00	1.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.17	1530	1.7
Alcona	N	Log perch			100	0.00	0.00	0.00	0.00	0.00	0.88	0.00	0.00	0.00	0.00	0.00	0.00	0.11	990	1.1
Alcona	N	Brook stickleback			100	0.00	0.00	0.00	0.71	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.11	990	1.1
Alcona	N	4 other spp			100	0.00	0.00	0.00	1.13	0.00	0.00	0.02	0.31	0.00	0.00	0.00	0.00	0.26	2249	2.5
Alcona	N	(n-177) TOTAL			100	0.00	0.00	0.00	26.19	3.16	9.68	8.94	4.79	5.41	2.82	2.35	0.00	5.26	46074	100.0
Alcona	НА	(best estimate) TOTAL			100													10.27	89977	
Foote	N	White sucker	17.6		100	0.00	0.35	0.00	18.76					0.00	0.00	0.00	0.00	8.62	75532	48.8
Foote	N	Walleye			100	0.00	0.00	0.00	7.77					0.00	0.00	0.00	0.00	3.53	30956	20.0
Foote	N	Smallmouth bass			100	0.00	0.00	0.00	0.00					1.52	5.76	0.00	0.00	1.96	17180	11.1
Foote	N	Rock bass			100	0.00	0.00	0.00	0.42					2,44	0.77	0.00	0.00	1.18	10370	6.7
Foote	N	Black crappie			100	0.00	0.00	0.00	0.65					0.00	0.00	0.30	0.27	0.48	4179	
Foote	N	Channel catfish			100	0.00	1.40	0.00	0.00					0.00	0.00	0.00	0.00	0.39	3405	2.2
Foote	N	Yellow perch			100	0.00	0.00	0.00	0.65					0.00	0.00	0.00		0.30	2631	1.7

	H. Mn	nthly and Annual Entrainment	Rate h	v Snec	ies															
			нз			Н6	H7	H8	H9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20
Plant Name	Basis (Net or Hydroacoustics)	Species Name	Average Size (in)	Median Size (in)	% of Total Plant Capacity Represented	Jan (fish per hour)	Feb.	Mar	Apr	May	Jun	jn;	Aug	Sept	Oct	Nov	Dec	Total Annual (fish/hour)	Total Annual (number)	Species Percentage of Total Entrained
Loud	N	Smallmouth bass		Ŀ	100	0.00	0.00	0.00	0.00	0.32	0.00	0.25	0.56	0.00	0.00	0.00	0.00	0.91	7964	
Loud	N	Log perch			100	0.00	0.00	0.00	0.28	0.00	0.00	0.00	0.00	0.00	0.34	0.00	0.00	0.61	5363	
Loud	N	Pirate perch			100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	2600	
Loud	N	Carp			100	0.00	0.00	0.00	0.00	0.00			0.00	0.00	0.00	0.00	0.00	0.30	2600	
Loud	N	Cresk chub			100	0.58	0.00	0.00	0.28	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.30		
Loud	N	Spottail shiner			100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	2600	
Loud	N	Yellow perch			100	0.00	0.00	0.00	0.00	0.00	0.00		0.56	0.00	0.00	0.00	0.00	0.30	2600	
Loud	N	מוט			100	0.00	0.00	0.00	0.00	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.30	2600	1.6
Loud	N	(n-61) TOTAL			100	1.17	0.00	0.00	0.55	1.93	3.88	5.14	3.93	2.96	2.69	0.00	0.00	1.87	16381	100.0
Loud	HA	(best estimate) TOTAL			100													18.55	162526	
Mio	N	Smallmouth bass	7.4		100	0.00	0.00	0.00	0.00	1.12	1.20	0.00	6.27	3.29	0.60	0.00	0.00	3.83	33570	27.9
Mio	N	Rock bass	5.5	L	100	0.00	0.00	0.00	0.00	0.00	1.01	1.23	2.22	3.29	1.00	0.00	0.00	2.66	23343	19.4
Mio	N	Walleye			100	0.00	0.26	0.00	0.00	3.13	1.81	2.11	0.52	0.30	0.60	0.22	0.40	2.18	19132	15.9
Mio	N	White sucker			100	0.00	0,00	0.00	0.00	2.01	0.20	0.17	0.13	0.15	3.19	3.42	0.40	2.18	19132	15.9
Mio	N	Bluegill			100	0.00	0.00	0.00	0.00	0.00	0.60	1.76	0.91	0.59	0.00	0.00	0.00	1.13	9866	8.2
Mio	N.	Yellow perch			100	0.00	0.00	0.00	0.00	0.22	0.20	0.17	0.39	0.15	0.00	0.00	0.40	0.37	3249	2.7
Mio	N	Golden redhorse			100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.45	0.40	0.00	0.00	0.23	2045	1.7
Mio	N	Lake whitefish			100	0.00	0.00	0.00	0.00	0.22	0.00	0.00	0.00	0.15	0.11	0.00	0.00	0.19	1685	1.4
Mio	N	13 other spp			100	0.00	0.27	0.00	2.06	1.59	0.61	0.36	0.66	2.24	0.16	0.44	0.00	0.92	8062	6.7
Mio	N	(n-294) TOTAL			100	0.00	0.53	0.00	8.32	8.29	5.63	5.80	11.10	8.38	5.98	4.06	1.19	4.34	38041	100.0
Mio	НА	(best estimate) TOTAL			100													13.74	120323	
Five Channels	N	Rock bass	5.2		100	0.00	0.00	0.00	0.00	2.21	0.00	3.00	0.00	5.80	0.40	0.00	0.00	16.23	142160	33.3
Five Channels	N	Smallmouth bass	9.0		100	0.00	0.00	0.00	0.00	0.00	0.85	1.50	0.00	0.00	0.00	0.00	0.00	10.58	92639	21.7

A3.1-15 prc 1993

	H. Mo	nthly and Annual Entrainment	Rate	y Spec	ies i									• •	<u> </u>	Γ				
	H1	H2	НЗ	Н4	H5	Н6	H7	H8	H9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20
lant Name	Basis (Net or Hydroacoustics)	Species Name	Nerage Size (in)	Median Size (in)	% of Total Plant Capacity Represented	Jan (fish per hour)	Feb	War	Apr	Asp	Jun	PR	Aug	Sept	061	Nov	Dec	Total Annual (fish/bour)	(otal Annual (number)	Species Percentage of Total Entrained
Croton	N		-	-	100	1.21	0.00	0.88	0.00	1.52		1.26	0.90	0.55		1,69	0.35	1.00	8790	
Croton	N	(n-851)TOTAL			100	4.22	0.00	1.77	6.43		32.06			26.04	19.79		3.11	17.00	148969	1
Croton	HA.	(best estimate) TOTAL			100													25.09	219761	
Rogers (PFTR&FFTR)ALL	N	Black crappie			100	0.00	0.00	0.00	2.71	1.12	0.29	0.21	1.27	2.11	0.98	0.02	0.00	0.69	6035	10.8
Rogers (PFTR&FFTR)ALL	N	Yellow perch			100	0.00	0.00	1.66	0.00	0.00	0.07	0.00	0.05	0.05	0.36	2.02	0.00	0.64	5643	10.1
Rogers (PFTR&FFTR)ALL	N	Shorthead redhorse	10.1		100	0.00	0.00	5.79	0.00	1.25	0.13	1.46	0.34	0.00	0.00	0.00	0.00	0.53	4638	8.3
Rogers (PFTR&FFTR)ALL	N	Fathead minnow			100	0.00	0.00	0.00	0.31	3.55	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.47	4135	7.4
Rogers (PFTR&FFTR)ALL	N	Smallmouth bass			100	0.00	0.00	0.00	0.00	0.32	0.94	0.97	0.00	0.31	0.36	0.02	0.00	0.43	3800	6.8
Rogers (PFTR&FFTR)ALL	N	Walleye			100	0.00	0.00	0.83	1.53	0.73	0.77	0.71	0.00	0.10	0.09	0.00	0.49	0.42	3688	6.6
Rogers (PFTR&FFTR)ALL	N	Chinook salmon			100	0.00	0.00	0.00	0.00	1.75	0.77	0.14	0.00	0.00	0.00	0.00	0.00	0.40	3464	6.2
Rogers (PFTR&FFTR)ALL	N	Bluegill			100	0.00	0.00	0.00	0.92	0.54	0.16	0.14	1.44	0.86	0.27	0.00	0.00	0.38	3353	6.0
Rogers (PFTR&FFTR)ALL	N	White sucker			100	0.00	0.00	3.30	0.31	0.95	0.07	0.07	0.00	0.05	0.44	0.29	0.00	0.32	2794	5.0
Rogers (PFTR&FFTR)ALL	N	letalurus spp			100	0.00	0.00	0.00	0.00	2.19	0.03	0.04	0.00	0.00	0.18	0.00	0.00	0.31	2682	4.8
Rogers (PFTR&FFTR)ALL	N	Spottal shiner			100	0.00	0.00	0.40	0.31	1.75	0.03	0.11	0.00	0.05	0.44	0.00	0.00	0.30	2626	4.7
Rogers (PFTR&FFTR)ALL	N	Rock bass			100	0.00	0.00	0.00	1.53	0.73	0.26	0.07	0.17	0.26	0.53	0.00	0.00	0.26	2235	4.0
Rogers (PFTR&FFTR)ALL	N	Brown bullhead			100	0.00	0.00	0.83	0.31	1.02	0.10	0.11	0.00	0.00	0.00	0.00	0.00	0.19	1676	3.0
Rogers (PFTR&FFTR)ALL	N	Moxostoma spp			100	0.00	0.00	0.00	0.00	0.50	0.65	0.04	0.00	0.00	0.00	0.00	0.00	0.19	1676	3.0
Rogers (PFTR&FFTR)ALL	N	Chestnut lamprey			100	0.00	0.00	0.00	0.00	0.95	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.13	1173	2.1
Rogers (PFTR&FFTR)ALL	N	Pumpkinseed			100	0.00	0.00	0.00	0.00	0.19	2.59	0.32	0.00	0.00	0.00	0.00	0.00	0.12	1061	1.9
Rogers (PFTR&FFTR)ALL	N	Brook stickleback			100	0.26	0.00	3.30	0.31	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	559	1.0
Rogers (PFTR&FFTR)ALL	N	26 other spp			100	0.26	0.00	4.09	3.08	1.04	0.23	0.25	0.76	0.61	0.63	0.00	0.00	0.52	4526	8.1
Rogers (PFTR&FFTR)ALL	N				100	0.53	0.00	20.25	11.31	18.61	4.79	4.64	3.99	4.53	4.36	2.35	0.49	6.38	55875	100.0

.1-17

	H. Mo	inthly and Annual Entrainment	Rate b	y Speci	ies									•						
	H1	H2	нз	H4	H5	Н6	H7	H8	H9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20
Plant Name	Basis (Net or Hydroacoustics)	Species Name	Average Size (m)	Median Size (in)	% of Total Plant Capacity Represented	(Jinoy Jed ysy) wey	Feb	Mar	Apr	May	ար	ht	Aug	Sept)0C	лом	Dec	Total Annual (fish/hour)	Total Annual (number)	Species Percentage of Total Entrained
Rogers (PFTR)units 3+4	N	Rockbass			50	0.00	0.00	0.00	1.44	0.71	0.00	0.00	0.00	0.00	0.31	0.00	0.00	0.20	1787	
Rogers (PFTR)units 3+4	N	Yellow perch			50	0.00	0.00	0.34	0.00	0.00	0.42	0.00	0.00	0.00	0.42	0.22	0.00	0.13	1140	3.7
Rogers (PFTR)units 3+4	N	Brook stickleback			50	0.00	0.00	1.99	0.28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.13	1140	3.7
Rogers (PFTR)units 3+4	N	UID sunfish			50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.56	0.00	0.00	0.00	0.00	0.11	986	3.2
Rogers (PFTR)units 3+4	N	White sucker			50	0.00	0.00	0.00	0.00	0.23	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.11	986	3.2
Rogers (PFTR)units 3+4	N	Smallmouth bass			50	0.00	0.00	0.00	0.00	0.71	0.00	0.00	0.00	0.00	0.21	0.00	0.00	0.09	801	2.6
Rogers (PFTR)units 3+4	N	Brown trout			50	0.00	0.00	0.66	0.86	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	801	2.6
Rogers (PFTR)units 3+4	N	DID			50	0.00	0.00	0.34	0.00	0.23	0.00	0.51	0.00	0.18	0.10	0.00	0.00	0.09	801	2.6
Rogers (PFTR)units 3+4	N	Shorthead redhorse			50	0.00	0.00	1.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	647	2.1
Rogers (PFTR)units 3+4	N	16 other spp			50	0.00	0.00	0.00	1.98	1.40	0.00	0.00	0.09	0.18	0.73	0.00	0.00	0.80	6995	22.7
Rogers (PFTR)units 3+4	N	(n-189) TOTAL			50	0.00	0.00	5.99	9.18	11.65	2.52	3.03	1.87	2.69	4.24	0.22	0.49	3.52	30816	100.0
Hardy	N	Yellow perch	3-8.		100	0.76	0.52	5.70	4.68	3.59	17.15	11.96	43.20	0.25	1.10	6.23	1.63	1.10	9652	37.2
Hardy	N	Walieye			100	0.31	0.00	3.81	8.66	4.97	1.94	1.61	0.35	2.30	1.32	1.62	0.33	0.59	5138	19.8
Hardy	N	White sucker			100	0.00	0.52	2.85	5.86	4.42	0.77	0.64	1.40	1.29	2.20	0.20	0.00	0.42	3710	
Hardy	N	Spottail shiner			100	0.61	0.52	6.66	0.47	0.55	0.00	0.00	0.00	0.25	0.22	4.83	0.97	0.28	9413	-
Hardy	N				100	0.00	0.00	0.00	0.00	0.00	2.74	0.64	0.00	1.29	0.88	5.22	0.33	0.28	9413	
Hardy	N	UID			100	0.00	0.00	1.89	0.00	0.00	0.00	0.00	0.00	0.51	0.44	1.40	0.00	0.08	701	
Hardy	N				100	0.00	0.00	0.00	0.23	0.00	0.00	0.32	1.74	0.51	0.00	0.00	0.00	0.06	493	
Hardy	N				100	0.00		0.00	0.00	0.00	0.00	1.29	0.00	0.00	0.66	0.00	0.00	0.04	363	
Hardy	N				100	0.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.63	0.04	311	
Hardy	N			\Box	100	0.00	0.00	0.00	0.47	0.00	0.00	0.32	0.00	0.00	0.22	0.20	0.00	0.03	259	
Hardy	N	6 other app			100	0.00	0.00	1.89	0.23	0.28	0.77	0.00	0.35	0.25	0.00	0.00	0.33	0.05	467	1
Hardy	N	(n-484) TOTAL			100	1.82	1.56	22.78	20.62		23.40		8.04	6.66	7.03	19.70	5.21	12.40	108611	

	H. Mo	enthly and Annual Entrainment	Rate b	y Speci	6 \$									•						
	-					Н6	H7	Н8	НЭ	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20
,	Basis (Net or Hydroacoustics)				% of Total Plant Capacity Represented													otal Amual (fish)hour)		Species Percentage of Total Entrained
Plant Name	Basis (Net	Species Name	Average Size (in)	Median Size (in)	% of Total P	Jan (fish per hour)	ع	Mar	Apr	May	l may	3	Aug	Sept	Oct	Nov	Dec	Total Annua	Total Annual (number)	Species Per
Moores Park Supplement	N				50									19.50						
Tower	N	Blackside derter		3.0	50	0.00	0.00		0.74	0.00	0.16	0.00	0.00	0.00	0.04	0.00	0.00	0.69	6059	20.0
Tower	N	Rock bass		4.2	50	0.00	0.00		1.00	0.00	2.97	0.86	0.24	0.54	1.37	0.00	0.00	0.66	5817	19.2
Tower	N	Brown bullhead		7.5	50	0.00	0.00		3.00	0.04	1.67	1.18	0.52	0.04	0.04	0.00	0.00	0.59	5180	17.1
Tower	N	Bluegill		4.4	50	0.00	0.00		0.91	0.93	0.65	0.24	0.00	0.00	0.00	0.00	0.04	0.25	2212	7.3
Tower	N	Common shiner		3.4	50	0.10	<.1		1.39	0.00	0.49	0.00	0.00	0.00	0.16	0.23	0.00	0.25	2181	7.2
Tower	N	White sucker		5.6	50	0.12	<.1		1.70	0.04	0.16	0.00	0.00	0.08	0.04	0.12	0.00	0.25	2181	7.2
Tower	N	Pumpkinseed		3.8	50		_											0.13	1182	
Tower	N	Fathead minnow			50				<u> </u>									0.09	788	
Tower	N	Logperch		3.4	50						ļ							0.08	666	
Tower	N	Reinbow derter		2.2	50						ļ							0.08	666	
Tower	N			20.5	50		0.00		<.1	0.00	0.04	0.00	0.00	0.00	0.00	<.1	0.00	0.06	485	
Tower	N			3.4	50				<u> </u>									0.05	454	
Tower	N				50											<u> </u>		0.04	394	-
Tower	N	Brook trout		8.0	50	<.1	0.00		0.17	0.00	0.04	0.00	0.00	0,00	0.00	0.15	0.00	0.04	394	
Tower	N	Northern redbelly dace			50													0.04	394	
Tower	N	· · · · · · · · · · · · · · · · · · ·			50				ļ							ļ		0.13	1121	3.7
Tower	N	(n-905) TOTAL		2.8	50		0.17		11.35	1.35	7.36	2.49	0.89	0.67	1.76	1.08	0.17	3.08		99.6
Tower	HA	(best estimate) TOTAL		2.7	50						1					<u> </u>		3.40	30295	<u> </u>
											<u> </u>									<u> </u>
Tower Supplement	N	Blackside darter		L_	50				6.07							<u> </u>				<u> </u>
Tower Supplement	N	Rock bass			50				1.00		ļ					<u> </u>			<u></u>	<u> </u>
Tower Supplement	N	Common shiner	<u> </u>		50	<u> </u>			0.31		<u> </u>	<u></u>			L	L		L,		<u> </u>

	H. Mo	nthly and Annual Entrainment	Rate b	y Speci	ies			[
					H5	Н6	H7	H8	НЭ	H10	H11	H12	H13	H14	H15	H16	H17	H18	н19	H20
Plant Name	Basis (Net or Hydroacoustics)	Species Name	Average Size (in)	Median Size (in)	% of Total Plant Capacity Represented	Jan (fish per hour)	Feb	Mar	Αρι	ABW.	uh	jης	Aug	Sept	00:1	AON	Dec	Total Annual (fishlhour)	Total Annual (number)	Species Percentage of Total Entrained
Buchanan	N	Rainbow trout	8.8		100													0.50	4811	6.9
Buchanan	N	Spotfin shiner		<u> </u>	100							<u> </u>						0.50	4384	6.3
Buchanan	N	Mirnic shiner			100													0.50	4242	6.1
Buchanan	N	Logperch	2.7		100													0.36	3188	
Buchanan	N	Unid Moxostoma		<u> </u>	100			ļ				<u> </u>						0,40	3197	•
Buchanan	N	Stonecat			100						<u> </u>							0.20	1954	
Buchanan	N	Sand shiner			100			<u> </u>				<u> </u>						0.20	1727	2.5
Buchenen	N	53 other spp			100							<u> </u>				<u> </u>		2.50	21789	
Buchanan	N	(n-3099) TOTAL		L	100													8.00	70006	100.0
									<u></u>											
Constantine	N	Mimic shiner	1.9		100	0.30	0.30	0.30	1.40	1.60	39.10	0.29	0.00	0.13	0.13	0.27	0.27	3.62	31711	67.1
Constantine	N	Log perch	2.3		100	0.00	0.00	0.00	1.30	1.40	0.00	1.20	0.00	0.00	0.00	0.00	0.00	0.32	2836	6.0
Constantine	N	Bluegill	3.4		100	0.20	0.20	0.20	0.61	0.10	0.28	0.15	0.00	0.14	0.14	0.18	0.18	0.19	1654	3.5
Constantine	N	Sand shiner	1.9		100	0.10	0.10	0.10	0.00	0.00	1.50	0.14	0.00	0.00	0.00	0.13	0.13	0.18	1607	3.4
Constantine	N	Bluntnose minnow	1.9		100	0.10	0.10	0.10	0.00	0.00	0.82	0.08	0.00	0.00	0.00	0.07	0.07	0.10	898	1.9
Constantine	N	Largemouth bass	1.6		100	0.00	0.00	0.00	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00	0.00	0.04	331	0.7
Constantine	N	17 other spp			100	0.99	0.99	0.99	2.29	0.20	0.90	2.10	0.00	0.41	0.41	0.99	0.99	0.35	3025	6.4
Constantine	N	(n-830) TOTAL			100	1.64	1.64	1.64	5.60	3.30	42.60	4.20	0.00	0.68	0.68	1.64	1.64	5.39	47259	100.0
Prickett	N	Bluegill	2.2		50	3.80	3.82	3.82	3.82	6.68	8.47	1.06	0.21	0.88	2.94	1.07	3.82	6.00	52538	45.3
Prickett	N	Black crappie	2.7		50	<.1	<.1	<.1	35.71	0.73	0.74	1.22	1.24	0.40	0.58	1.29	<.1	5.28	46276	39.9
Prickett	N	Common shiner	3.3		50													0.49	4291	3.7
Prickett	N	Rock bass	5.3		50													0.24	2088	1.8
Prickett	N	Log perch	3.3		50													0.21	1856	1.6

1-23 DPC 1893

	H. Mo	onthly and Annual Entrainment	Rate b	y Speci	88															
	_					Н6	H7	HB	H9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20
Plant Name	Basis (Net or Hydroacoustics)	Species Name	Average Size (m)	Wedian Size (in)	% of Total Plant Capacity Represented	Jan (fish per hour)	Fab	Mar	Apr	May	Jun	7	Aug	Sept	061	Nev	Dec	Total Annual (fish/hour)	Total Annual (number)	Species Percentage of Total Entrained
Escanaba Dam 3	N	Brown bullhead	_	-	100						1 7							0.13	1110	
Escanaba Dam 3	N	Walleye		6.0	100													0.09	827	3.8
Escanaba Dam 3	N	Yellow perch		6.0	100													0.09	805	3.7
Escanaba Dam 3	N	Fathead minnow		4.0	100													0.09	762	3.5
Escanaba Dam 3	N	Golden shiner		4.0	100													0.08	740	3.4
Escanaba Dam 3	N	Creek chub		4.0	100													0.08	675	3.1
Escanaba Dam 3	N	White sucker			100													0.08	675	3.1
Escanaba Dam 3	N	Rosyface shiner		4.0	100													0.06	522	2.4
Escanaba Dam 3	N	Bluntnose minnow		4.0	100													0.05	435	2.0
Escanaba Dam 3	N	Sand shiner		4.0	100													0.04	370	1.7
Escanaba Dam 3	N	Northern pike			100													0.03	305	1.4
Escanaba Dam 3	N	Longnose sucker			100	·												0.03	261	1.2
Escanaba Dam 3	N	Smallmouth bass			100													0.02	218	1.0
Escanaba Dam 3	N	Blacknose shiner		4.0	100													0.02	218	1.0
Escanaba Dam 3	N	15 other spp			100													0.13	1175	5.4
Escanaba Dam 3	N	(n-1615) TOTAL			100	0.20	0.10	0.20	11.60	4.90	5.60	1.40	0.70	0.60	1.90	2.40	0.20	2.48	21762	100.0
French Landing	N	Black crappie		6.1	100													138.10	1209346	75.9
French Landing	N	Bluegill		5.3	100													32.20	282022	17.7
French Landing	N			5.4	100													2.90	25493	1.6
French Landing	N	Gizzard shad		8.9	100													2.20	19120	1.2
French Landing	N	TOTAL			100		20.00			282.50	75.00	774.40	425.60	610.20	264.20	61.40		181.90	1593342	
French Landing	N	TOTAL			100							121.40								
									1											

-25

	H. Me	onthly and Annual Entrainment	Rate by	y Speci	ies									•				<u> </u>		
	H1	H2	нз	H4	H5	H6	H7	HB	H9	H10	H11	H12	Н13	H14	H15	H18	H17	H18	H19	H20
Plant Name	Basis (Net or Hydroacoustics)	Species Name	Average Size (in)	Median Size (in)	% of Total Plant Capacity Represented	dan (fish per hour)	Feb	Mar	Apr	May	Jun	bil	Buk	Sept	סמ	Nov	Dec	Total Annual (fish/hour)	fotal Annual (number)	Species Percentage of Total Entrained
Park Mill		26 other spp			100	0.00	0.00	0.25	1.10	0.61		-			0.77	0.35				31.9
Park Mill	both				100	0.42	0.42	0.98	4.26	4.39	25.12	13.47	5.05	6.83	4.52	0.85	0.42	5.56	48735	
Park Mill	НА	(best estimate) TOTAL			100	0.00	0.01	0.04	14.40	6.80	17.60	4.60	7.30	11.40	0.19	1.19	0.58	5.31	46138	
White Repids	N	Common shiner		3.5	100	0.00	0.00	0.00	0.00	3.43	0.01	36.96	4.12	0.48	4.67	0.11	0.00	4.23	37028	25.6
White Rapids	N	Bluegill		2.8	100	0.00	0.00	0.00	0.19	0.14	0.09	0.38	6.37	8.51	10.19	1.04	0.00	2.26	19783	13.7
White Rapids	N	Black crappie		3.5	100	0.00	0.00	0.08	0.30	0.02	0.03	0.69	10.50	3.86	4.88	1.90	0.00	1.87	16403	11.3
White Repids	N	Yellow perch		2.0	100	0.00	0.00	0.06	0.17	0.04	0.96	11.91	0.79	1.54	5.46	0.52	0.00	1.81	15885	11.0
White Repids	N	Walleye		2.0	100	0.00	0.00	0.00	0.02	0.10	17.23	2.33	0.28	0.19	1.37	0.00	0.00	1.78	15582	10.8
White Repids	N	Emerald shiner		2.0	100	0.00	0.00	0.00	0.26	0.11	0.08	14.27	1.28	0.00	0.00	0.00	0.00	1.36	11904	8.2
White Repids	N	Black bullhead		9.5	100	0.00	0.00	1.14	1.83	1.54	2.30	0.69	2.20	1.49	0.68	0.26	0.00	1.02	8904	6.2
White Rapids	N	Log perch		4.3	100	0.00	0.00	0.00	0.13	0.22	0.64	2.91	0.73	0.72	1.19	0.01	0.00	0.55	4851	3.4
White Rapids		Moxostoma spp		7.5	100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.96	0.00	0.00	0.17	1457	1.0
White Rapids		Smailmouth bass		4.3	100	0.00	0.00	0.00	0.00	0.01	1.75	0.45	0.42	0.94	0.04	0.00	0.00	0.30	2626	1.8
White Rapids	N	Shorthead redhorse		7.5	100	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	1.35	0.08	0.00	0.12	1092	0.8
White Rapids	N	Rock bass		4.3	100	0.00	0.00	0.00	0.17	0.06	0.18	0.01	0.03	0.04	0.97	0.00	0.00	0.12	1089	0.8
White Rapids	N	Silver redhorse		6.7	100	0.00	0.00	0.00	0.00	0.58		0.08	0.00	0.03	0.78	0.00	0.00	0.13		1
White Repids		Largemouth bass		4.3	100	0.00	0.00	0.04	0.00	0.00		0.02	0.00	0.01	0.75	0.07	0.00	0.08		0.5
White Rapids	_	29 other spp			100	0.00	0.00	0.12	0.77	2.98		0.75	0.36	0.85	0.29	0.70		0.70		4.2
White Repids		(best estimate) (n-4633)	TOTAL		100	0.00	0.00	1.43	3.85	9.22	25.01	71.45	27.08	18.66	34.58	4.70		16.50	144554	
White Rapids	НА	TOTAL			100	8.52	0.00	0.29	0.92	1.44	1.17	0.37	5.73	1.19	18.50	2.67	1.68	5.92	51898	
Brule	N	Yellow perch		1.2	100	0.00	0.00	0.05	0.62	1.70	11.60	8.20	0.12	0.20	1.60	0.66	0.00	2.07	18161	43.3
Brule	N	Walleye		3.5	100	0.00	0.00	0.00	0.19	1.10	0.25	4.90	0.63	0.26	1.20	0.11	0.00	0.74	6478	15.5

	н ма	enthly and Annual Entrainment	Rete h	v Snec		<u> </u>							_			Γ	<u> </u>	<u> </u>	=	
			НЗ		H5	H6	Н7	H8	H9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20
Pant Name	Basis (Net or Hydroacoustics)	Species Name	Average Size (in)	Median Size (in)	% of Total Plant Capacity Represented	lan (fish per hour)						112						Total Annual (fish/hour)	Cotal Annual (number)	Species Percentage of Total Entrained
Crowley		Yellow perch	A	9 5.5	100	- 특 <.1	是 0.00	 0.10	10.30		0.90	<u></u> 3 1.30	0.20	5.70	년 0.30	<u>≥</u> 0.10	<u>볼</u> 0.00	돌 1.19	<u>본</u> 10417	چچ 15.6
Crowley		Black crappie		3.5	100		0.10	0.10		<.1	<.1	0.20	0.70		1.80			0.43	3801	5.7
Crowley	_	Blackside darter		3.5		_	0.00	0.00		4.10		-	0.00		0.00			0.43	3238	
Crowley	_	Black bulihead		2.5		<.1	0.10	0.20		0.30			0.10	_	0.40			0.36	3158	
Crowley		White sucker		7.5	-	0.00	0.00	0.20	1.00	0.30		0.80	0.00	<.1	0.10			0.21	1844	
Crowley		Yellow builhead		4.5	100	0.10	<.1	0.10		0.10		0.10	0.30	_	0.30		•		1556	
Crowley		Largemouth bass	1.	.5/8.5	100	0.00	0.00	0.00	0.00	0.00	0.00	0.40	<.1	0.40	1.00	0.00		0.15	1318	
Crowley		Johnny darter		2.5	100	0.00	0.00	<.1	0.10	1.40		0.00	0.00	0.00	0.00	0.00	0.00	0.13	1139	
Crowley		Smallmouth bass		2.5	100	0.00	0.00	0.00	0.00	0.00			0.50	<.1	0.00	0.00	0.00	0.12	1088	
Crowley	Both	Brook stickleback	1.	.5/5.5	100	0.00	0.00	<.1	0.60	0.40		<.1	0.00	0.10	<.1	0.10	0.00	0.11	923	
Crowley	Both	Brassy minnow		2.5	100	0.00	0.00	<.1	0.00	0.70	<.1	0.00	0.00	0.10	0.00	0.00	0.00	0.07	603	
Crowley		25 other spp			100	0.20	0.10	0.10	0.50	0.90		1.20	0.50	4	0.30	0.40	0.10		3914	
(estimate used) Crowley	Both	(n-5920) TOTAL			100	0.50	0.50	0.90	14.80	9.40	18.30	34.50	2.60	4.80	4.90	1.70	0.50	7.60	66920	
Crowley	НА	TOTAL			100	0.50	0.60	2.80	15.50	13.20	4.50	7.70	4.00	6.10	27.20	7.70	8.70	7.90	69239	
Upper	НА	TOTAL			100	6.70	1.80	9.10	20.90	14.70	7.10	10.10	6.10	5.80	4.90	3.80	3.10	6.40	55779	
Lower	HA	TOTAL			100	13.60	3.00	7.80	7.60	2.60	2.00	11.60	7.50	26.20	23.70	22.80	11.50	11.80	104046	
Pixley	HA	TOTAL			100	2.80	1.70	2.20	0.60	2.20	1.70	5.60	8.70	3.90	40.50	2.90	3.10	5.60	48870	
Rothschild	N	Black crappie		3.0	100	0.00	0.00	0.00	0.10	0.20	7.10	33.40	14.00	7.70	0.50	0.50	0.20	11.80	103013	48.4
Rothschild	N	Bluegill		2.0	100	0.00	0.00	0.00	<.01	1.00	2.10	10.70	7.70	2.60	9.60	0.30	0.40	4.30	37504	17.6
Rothschild	N	Northern logperch		3.0	100													1.70	14912	7.0

1-29 Dec 1803

	H. Mo	onthly and Annual Entrainment	Rate b	y Speci	es											Γ				
	HI	H2	НЗ	H4	H5	H6	H7	H8	Н9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20
Plant Name	Basis (Net or Hydroacoustics)	Species Name	Average Size (in)	Median Size (in)	% of Total Plant Capacity Represented	Anot is the four in the four i	Feb	Mar	Apr	УвМ	hin	Į r r	Aug	Sept)Oct	Nov	Dec	Total Annual (fish/hour)	Total Annual (number)	Species Percentage of Total Entrained
Centralia	N	Black crappie		2.1	100	0.50	0.50	0.50	0.30	0.00	0.00	1.10	8.80	5.30	1.60	1.20	1.20	1.80	15480	
Centralia	N	White crappie	L	< 1.5	100	0.10	0.10	0.10	0.00	0.00	5.20	7.10	0.80	0.20	0.40	0.20	0.20	1.20	10472	1.3
Centralia	N	Black bullhead		<u>>8</u>	100	0.00	0.00	0.00	0.20	2.30	1.10	3.70	0.90	0.00	0.40	0.00	0.00	0.70	6398	0.8
Centralia	N	24 other spp			100	0.70	0.70	0.70	4.00	1.80	8.30	3.70	1.20	0.60	2.00	0.20	0.20	2.00	17669	4.1
Centralia	N	(n-2510) TOTAL			100	8.80	8.80	8.80	38.70	14.90	37.60	672.20	154.40	66.80	33.60	41.9	41.90	95.20	834377	
Shawano	N	Black Crappie		4.9	100	0.20	NS	3.10	4.30	0.10	1.30	0.20	0.00	0.10	<.1	0.40	0.20	0.79	6922	17.0
Shawano	N	Bluegill		4.9	100	0.10	NS	0.1	0.30	0.00	6.00	0.20	0.30	1.10	<.1	0.10	0.10	0.67	5864	14.4
Shawano	N	Pumpkinseed		5.9	100	<.1	NS	<.1	1.50	0.40	1.30	0.20	0.30	0.50	<.1	<.1	0.10	0.35	3054	7.5
Shawano	N	Rock bass		5.9	100	0	NS	<.1	0.3	0.5	1.3	0.6	0.6	1.5	0.7	0.1	0.1	0.34	3013	7.4
Shawano	N	Largemouth bass		2.0	100	0.00	NS	0.00	0.10	0.20	1.80	1.50	<.1	0.60	<.1	<.1	<.1	0.34	2972	7.3
Shawano	N	White sucker		7.9	100	0.00	NS	0.00	0.20	0.30	1.80	0.40	<.1	<.1	<.1	0.10	0.10	0.24	2077	5.1
Shawano	N	Brassy minnow		3.0	100	0.00	NS	0.00	0.30	2.10	0.00	0.00	0.00	<.1	<.1	0.10	0.10	0.22	1955	4.8
Shawano	N	Black bullhead		7.9	100	0.10	NS	0.00	0.20	0.20	1.20	0.10	<.1	0.10	<.1	0.00	<.1	0.15	1344	3.3
Shawano	N	Shorthead redhorse		11.8	100	0.00	NS	0.00	0.00	0.00	1.00	0.10	0.00	<.1	<.1	0.10	0.00	0.10	855	2.1
Shawano	N	Golden shiner			100	0.00	NS	0.00	0.70	0.10	0.10	0.10	0.00	0.00	0.00	<.1	0.10	0.10	855	2.1
Shawano	N	Logperch			100	0.00	NS	0.00	0.00	0.80	0.20	0.00	<.1	<.1	0.10	<.1	0.00	0.10	855	2.1
Shawano	N	Fathead minnow		3.0	100	0.00	NS	0.00	<.1	0.00	0.40	0.10	0.30	0.10	<.1	<.1	<.1	0.08	733	
Shawano	N	Common shiner			100	0.20	NS	0.00	0.00	<.1	<.1	<.1	<.1	<.1	0.50	0.10		0.08	692	
Shawano	N	Rosyface shiner		3.0	100	0.00	NS	<.1	0.00	0.00		0.50	<.1	<.1	0.00	0.00		0.07	611	1.5
Shawano	N	Smallmouth bass		8.9	100	<.1	NS	0.00	0.00	0.00	0.30	<.1	<.1	0.30	<.1	0.10	<.1	0.07	611	1.5
Shawano	N	Tadpole madtom			100	<.1	NS	0.10	0.10	<.1	0.30	0.20	0.00	0.00	<.1	0.00	0.00	0.07	611	1.5
Shewano	N	 			100	0.00	NS	0.00	<.1	0.60		0.00	0.00	<.1	<.1	<.1	0.00	0.07	570	
Shawano	N	Yellow bullhead			100	<.1	NS	0.00	0.10	<.1	0.10	<.1	0.10	<.1	<.1	0.10	0.00	0.05	448	1.1

	H. Mc	enthly and Annual Entrainment	Rate t	y Spec	ies															
	H1	H2	НЗ	H4	H5	H6	H7	H8	H9	H10_	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20
Plant Name	Basis (Net or Hydroacoustics)	Species Name	Average Size (in)	Median Size (in)	% of Total Plant Capacity Represented	Jan (fish per hour)	Feb	Mar	Apr	ÁВW	nn	lık	Aug	Sept	0ct	Nov	Dec	Total Annual (fish/hour)	Total Annual (number)	Species Percentage of Total Entrained
99 Islands	N	Bluegill			100	0.42	1.10	0.00	3.70	7.70	10.20	9.60	8.60	4.00	23.80	1.10	0.00	4.03	35342	21.7
99 Islands	N	Gizzard shad			100	0.84	1.60	4.80	1.90	6.90	5.70	5.30	4.80	0.56	1.00	10.00	0.00	2.47	21661	13.3
99 Islands	N	Threadfin shad			100	0.00	0.00	0.00	0.47	13.50	3.30	3.10	2.80	3.60	0.00	0.00	0.00	1.54	13518	8.3
99 Islands	N	White catfish			100	5.90	15.20	0.00	0.47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.17	10261	6.3
99 Islands	N	Striped jumprock			100	0.00	0.00	0.00	5.10	0.00	0.48	0.44	0.40	0.19	6.30	3.40	0.00	0.93	8143	5.0
99 Islands	N	Snail builhead			100	0.00	0.00	1.00	0.00	5.80	1.20	1.10	1.00	0.75	1.80	0.57	0.00	0.76	6678	4.1
99 Islands	N	Redbreast sunfish			100	0.00	0.00	0.00	0.00	1.20	1.70	1.60	1.40	0.19	2.80	3.20	0.00	0.69	6026	3.7
99 Islands	N	Smallfin redhorse			100	0.00	0.00	0.00	7.90	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.50	4397	2.7
99 Islands	N	Whitefin shiner			100	0.00	0.00	0.00	0.00	1.20	1.20	1.10	1.00	0.56	1.00	0.00	9.00	0.35	3094	1.9
99 Islands	N	Spottail shiner			100	0.00	0.00	0.00	0.47	1.50	1.20	1.10	1.00	0.00	0.00	0.00	0.00	0.30	2606	1.6
99 Islands	N	Black crappie			100	0.00	0.00	0.00	0.47	1.20	0.00	0.00	0.00	0.00	1.80	1.10	0.00	0.26	2280	1.4
99 Islands	N	Shorthead redhorse			100	0.42	1.10	0.00	0.00	0.00	0.48	0.44	0.40	0.56	0.00	0.00	0.00	0.19	1629	1.0
99 islands	N	Blueback herring			100	0.00	0.00	3.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.19	1629	1.0
99 Islands	N	16 other spp			100	1.72	4.40	0.00	3.32	1.80	0.00	0.00	0.00	0.09	3.20	2.46	0.00			5.2
99 Islands	N	TOTAL			100	28.70	73.40	10.00	23.80	41.50	25.94	24.20	21.80	12.20	46.20	22.40	0.00	27.20	238447	100.0
99 Islands	НА	(best estimate) TOTAL			100	1.70	2.20	18.80	14.70	39.20	21.80	11.10	24.80	13.80	35.50	37.20	1.10	18.60	162868	
Gaston Shoals	N	Snail bullhead			100	0.54	0.30	0.00	2.60	0.30	17.00	14.50	13.20	1.40	0.91	0.00	0.48	4.30	37601	24.0
Gaston Shoals	N	Bluegill			100	1.60	3.60	0.90	2.70	1.00	3.90	3.30	3.00	4.60	2.90	0.00	0.00	2.30	20411	13.0
Gaston Shoals	N				100	0.81	0.90	0.00	0.30	0.88	5.40	4.60	4.20	5.10	3.30	0.35	0.48	2.20	19209	12.3
Gaston Shoals	N	Redbreast sunfish			100	0.27	0.30	1.50	2.70	1.20	7.00	5.90	5.40	0.75	0.54	0.00	0.00	2.10	18743	12.0
Gaston Shoals	N				100	0.27	0.30	0.00	8.70	1.20		0.74	0.68	0.15	0.36	0.35	0.00	1.10		1
Gaston Shoals	N				100	0.54	0.90	0.00	1.20	0.88	_	3.00	2.70	0.15	0.18	0.00	0.00	1.10		
Gaston Shoals			Г		100	0.00	0.00	0.00	3.90	0.00		1.10	1.00	0.00	0,00	0.00	0.00	0.61	5324	

.1-33 pec 1993

	H. Mo	nthly and Annual Entrainment	Rate b	v Speci	es											Γ				
						H6	H7	HB	H9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20
Pant Name	Basis (Net or Hydroacoustics)	Species Name	Average Size (in)	Wedian Size (in)	A of Total Plant Capacity Represented	an (fish per hour)						niz						Total Annual (fish/hour)	Total Annual (number)	Species Percentage of Total Entrained
Saluda	₩	हुई Channel catfish	Ave	Me	100	0.00	歪 0.00	Mar	Apr	May	0.30	马 0.46		0.00	<u>당</u> 00.0	<u>.</u> 0.00	<u>율</u> 0.00	0.09	<u>물</u> 801	ළ <u>ී</u> 1.1
Saluda	N			-	100	0.09	0.00				0.69	0.46	0.00	2.40	3.62			0.03	2038	2.8
Saluda	N	6 other spp (n-244) TOTAL	-		100	16.00	20.70				17.70	10.70	7.00	6.30	26.30				87274	100.0
			-		100	3.30	0.00	2.30	2.70	0.98	, 			9.60	18.30			8.31	72798	100.0
Saluda	ПА	(best estimate) TOTAL	-		100	3.30	0.001	2.30	2.70	0.80	1.40	17.00	31.00	3.00	10.30	8.30	2.00	0.31	12/30	
Halliday's Dridge 1000		Cid abad			100	5.40	3.10							0.00	0.00	1.40	5.00			38.0
Holliday's Bridge 1990	N	Gizzard shad			100	0.94	0.00							1.10	4.20		1.10			20.9
Holliday's Bridge 1990		Bluegill		 		0.00					_				1.90					6.7
Holliday's Bridge 1990	N	Whitefin shiner			100		0.00							0.65						6.5
Holliday's Bridge 1990	_	Channel catfish	-		100	0.00 0.70	0.00				-			1.80	0.35 0.35	0.36 0.36				6.0
Holliday's Bridge 1990	N	Black crappie			100	0.00	0.00				 			0.22 1.10	0.35	0.00				3.7
Holliday's Bridge 1990		White catfish		-	100		0.00			_						0.00				
Holliday's Bridge 1990		Yellow perch	—		100	0.47	0.00							0.00	0.00		0.41			2.9
Holliday's Bridge 1990	N	Redear sunfish			100	0.00	0.00							0.22	0.70					2.4
Holliday's Bridge 1990	N.	Piedmont darter		_	100	0.24	0.00				 			0.00	0.00	0.24	0.28			1.9
Holliday's Bridge 1990	N	Fieryblack shiner	<u> </u>	-	100	0.00	0.00							0.00	0.70	0.00				1.8
Holliday's Bridge 1990	N	Redbreast sunfish			100	0.00	0.00							0.22	0.35	0.00				1.5
Holliday's Bridge 1990	N	Golden shiner			100	0.24	0.31							0.00	0.00					1.4
Holliday's Bridge 1990	N N	Sandbar shiner	├—		100	0.24	0.31				}			0.00	0.00					1.4
Holliday's Bridge 1990	N	Northern hogsucker			100	0.24	0.31							0.00	0.00					1.4
Holliday's Bridge 1990	N	Seagreen derter	<u> </u>	-	100	0.24	0.31				-			0.00	0.00					1.4
Holliday's Bridge 1990	N	Snail builhead			100	0.24	0.00							0.00	0.00		205.00			
Holliday's Bridge 1990		Flat builhead	_	_	100	0.00								0.00	0.35					0.9
Holliday's Bridge 1990		(N-111) TOTAL			100	8.90								5.30	9.30					100.0
Holliday's Bridge 1990	HA	TOTAL	L	ئــــــــــــــــــــــــــــــــــــــ	100	4.40	0.94	0.48					0.83	1.50	2.10	5.70	7.30			

.1-35

	H. Ma	enthly and Annual Entrainment	Rate b	y Speci	es															
	H1	H2	НЗ	H4	H5	Н6	H7	H8	H9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20
Plant Name	Basis (Net or Hydroacoustics)	Species Name	Average Size (in)	Median Size (m)	% of Total Plant Capacity Represented	Jan (fish per hour)	Feb	Mar	Apr	VeW	Jun	bd	Aug	Sept	00	Nov	Dec	fotal Annual (fish/hour)	Total Annual (number)	Species Percentage of Total Entrained
Abbeville	N	Yellow perch		4.3	100	3.28	3.28	28.63	7.73	5.26		0.00	0.00	0.00	0.00	0.00	1.60	4.80		
A b beville	N	Bluegill		3.7	100	0.00	0.00	1.15	7.56	23.61	0.16	0.14	0.17	0.16	0.14	0.11	0.21	3.60	14501	29.2
Abbeville	N	Threadfin shad		3.4	100	0.32	0.32	1.49	5.76	4.92	0.00	0.00	0.00	9.00	0.00	0.00	0.92	2.12	5601	11.3
Abbeville	N	Brown bullhead		10.8	100	0.00	0.00	1.01	0.36	5.64	0.00	0.00	0.00	0.00	0.82	0.65	0.00	0.89	3757	7.8
A b beville	N	White catfish		4.6	100	0.00	0.00	0.34	0.36	0.71	0.00	0.00	0.00	0.00	0.69	0.54	0.00	0.25	1011	2.0
Abbeville	N	All other spp			100	0.00	0.00	1.18	2.15	1.97	0.00	0.00	0.00	0.00	0.13	0.11	2.17	0.00		
Abbeville	N	(n-638) TOTAL			100	3.60	3.60	33.80	23.92	42.08	0.16	0.14	0.17	0.16	1.78	1.41	4.90	12.40	49577	100.0
Hawks Nest	both	Gizzard shad		2.0	100	0.00	0.75	0.60	0.00	0.00	0.00	0.00	0.24	0.26	3.30	17.90	0.06	1.90	16698	34.6
Hawks Nest	both	Gizzard shad		>4	100	0.32	0.94	0.52	0.00	0.00	0.06	0.00	0.00	0.17	3.30	7.90	0.30	1.10	9810	20.3
Hawks Nest	both	Channel catfish		2.0	100	0.00	0.00	0.00	0.04	0.00	0.00	0.00	6.90	4.30	0.00	0.00	0.00	0.90	8264	17.1
Hawks Nest	both	Channel catfish		6.0	100	0.00	0.00	0.00	0.00	0.04	0.40	1.10	0.00	0.00	0.00	0.02	0.01	0.10	1181	2.4
Hawks Nest	both	Channel catfish		10.0	100	0.00	0.00	0.00	0.00	0.00	1.40	0.00	0.25	0.26	0.00	0.00	0.00	0.20	1370	2.8
Hawks Nest	both	Channel catfish		> 12	100	0.00	0.00	0.00	0.01	0.00	0.28	0.00	0.00	0.00	0.00	0.00	0.00	0.02	207	0.4
Hawks Nest	both	Bluegill		3.5	100	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.44	0.44	3.10	0.00	0.00	0.30	2937	6.1
Hawks Nest	both	Bluegill		>4	100	0.00	0.00	0.15	0.01	0.14	0.13	0.00	0.44	0.46	0.20	1.40	0.00	0.20	2177	4.5
Hawks Nest	both	Hybrid striped bass		6.0	100	0.00	0.56	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.22	0.06	0.10	618	1.3
Hawks Nest	both	Hybrid striped bass		10.0	100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	3.10	0.00	0.00	0.30	2331	4.8
Hawks Nest	both	Smallmouth bass		6.0	100	0.00	0.00	0.00	0.00	0.00		0.00	1.50	0.00	0.00	0.00	0.00	0.10		2.4
Hawks Nest	both	Rock bass		6.0	100	0.00	0.00	0.00	0.00	0.05	0.08	0.97	0.00	0.00	0.00	0.04	0.01	0.10	854	1.8
Hawks Nest	both	5 other spp			100	0.00	0.00	0.00	0.07	0.05	0.17	0.00	0.23	0.40	0.00	0.00	0.00	0.10	683	1.5
Hawks Nest	both	TOTAL			100	0.32	2.25	1.32	0.14	0.28	2.52	2.07	10.00	6.30	13.00	27.50	0.44	5.50	48269	100.0
Dam # 4 (1986)	N	Bluegill	5.7	6.0	50	NS	NS	NS	0.32	0.42	0.12	0.04	0.08	0.26	0.08	NS	NS			22.8

DPC 1993

·	H. Mo	enthly and Annual Entrainment	Rate b	y Speci	es									•		[Γ			
	j	H2				H6	H7	HB	Н9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20
Plant Name	Basis (Net or Hydroacoustics)	Species Name	Average Size (in)	Median Size (in)	% of Total Plant Capacity Represented	Jan (fish per hour)	Feb	Mar	Apr	May	mr	pe	Aug	Sept)Oct	Nov	Dec	Total Annual (fish/hour)	Total Annual (number)	Species Percentage of Total Entrained
Monthly entrainment	N	Purnkinseed	5.8	6.0	100	NS	0.00	<.1	<.1	0.00	<.1	<.1	<.1	<.1	0.00	0.00	0.00	0.01	137	
rates represent 30% of	N	Golden shiner		4.0	100	NS	0.00	<.1	<.1	0.00	<.1	0.00	0.00	0.00	0.00	0.00	0.00	0.01	61	+
plant capacity but total	N	Green sunfish	4.6	5.0	100	NS	0.00	<.1	<.1	0.00	<.1	<.1	<.1	<.1	0.00	0.00	0.00	0.01	61	_
annual entrainment est.	N	Spottail shiner	4.1	4.0	100	NS	0.00	0.00	<.1	<.1	<.1	0.00	0.00	0.00	0.00	0.00	0.00	0.01	56	1.0
is representative	N	18 other spp			100	NS	0.00	<.1	<.1	<.1	<.1	<.1	0.00	<.1	0.00	<.1	<.1	<.1	207	
of 100% of flow	N	TOTAL			100	NS	0.10	0.50	0.50	0.50			0.30	0.60	0.40	0.60	<.1	0.62	5433	
Dam # 4 (1992) Monthly entra	nment	rates represent 30% of pla	nt cap	acity b	ut tot	el entrainm	ent estima	e is repre	sentative	of 100%	of plant	flow						·		
Millville 91	N	Redbreast sunfish	7.0	7.0	100	0.00	0.00	0.00	0.60	1.00	3.10	2.90	0.10	1.00	0.70	0.20	<.1	1.35	10776	38.5
Monthly entrainment	N	Bluegill	6.7	7.0	100	0.10	<.1	<.1	1.70	1.00	1.60	0.70	0.10	0.90	0.70	<.1	0.00	0.93	7444	26.6
rates represent 30% of	N	American eel	31.6	31.0	100	0.00	0.00	0.00	0.00	<.1	<.1	<.1	<.1	<.1	0.60	1.40	1.00	0.41	3311	11.8
plant capacity but total	N	Smallmouth bass	7.6	8.0	100	0.00	0.00	0.00	0.10	0.10	0.60	0.30	0.10	0.20	0.30	0.10	0.00	0.27	2180	7.8
annual entrainment est.	N	Rock bass	6.8	7.0	100	0.00	0.00	0.00	0.60	0.50	0.20	0.10	<.1	0.20	0.10	<.1	0.00	0.18	1428	5.1
is representative	N	Channel catfish	11.4	11.0	100	<.1	<.1	0.00	1.40	0.10	<.1	0.10	<.1	0.10	<.1	<.1	0.00	0.10	779	2.8
of 100% of flow	N	Pumpkinseed	6.2	6.0	100	0.00	0.00	0.00	0.30	0.20	0.20	<.1	0.00	<.1	<.1	<.1	0.00	0.08	665	2.4
Millville 91	N	All other spp			100	<.1	<.1	<.1	0.30	2.80		<.1	<.1	1.10	<.1	0.20	<.1	0.18	1383	6.0
Millville 91	N	(n-5321) TOTAL			100	0.24	0.08	<.1	5.10	3.80	6.20	4.10	0.30	3.50	2.40	1.90	1.10	3.50	27966	100.0
Millville (1991) Monthly entrain	ment r	ates represent 29% of plan	t capa	ity bu	t total	entrainme	nt estimate	is repres	entative o	100% of	plant 1	low								
Millville 90	N	Redbreast	6.9	7.0	29	0.00	0.00	0.00	2.50	0.40	<.1	0.00	<.1	NS	NS	NS	0.00			27.5
Millville 90	N	Shorthead redhorse	15.6	16.0	29	<.1	<.1	0.00	0.40	0.70	1.50	0.40	0.40	NS	NS	NS	0.10			27.5
Millville 90	N	Bluegill	6.5	7.0	29	<.1	<.1	<.1	0.20	0.10	1.00	0.30	0.20	NS	NS	NS	0.10			16.4
Millville 90	N	Channel catfish	10.6	10.0	29	0.00	<.1	<.1	0.20	0.60	0.70	0.20	0.10	NS	NS	NS	0.20			13.1
Millville 90	N	Rockbass	6.4	6.0	29	<.1	0.00	0.00	0.10	0.10	0.20	0.10	<.1	NS	NS	NS	0.10			3.4

1-39 OPC 1993

Г		H. Mo	nthly and Annual Entrainment	Rate b	v Spec	es]	
			H2			Ī	Н6	H7	H8	Н9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20
	Pant Name	Basis (Net or Hydroacoustics)	ocies Name	erage Size (in)	Median Size (m)	% of Total Plant Capacity Represented	Jan (fish per hour)		Mar		May	-		50	Sept	**	Nov		fotal Annual (fishthour)	(otal Annual (number)	Species Percentage of Total Entrained
\vdash	Millville 86	R N	න Redbreast sunfish	6.0		29	— ∃ NS	£ NS	_ NS	NS Agr	æ NS	1.50	0.10	Y Aug	0.00	절 00.0	NS NS	음 NS	<u> </u>	۴	20.1
	Millville 86	N	Channel catfish	_	_				NS	I	_	0.90			<.1	0.00	NS				17.1
	Millville 86	N	Smallmouth bass						NS		NS			<.1	0.00	0.00	NS				9.1
	Millville 86	N	Common carp		22.0		NS		NS		NS			<.1	<.1	0.00	NS				7.9
	Millville 86	N	Yellow builhead			29	NS		NS		NS	0.20	<.1	0.10	0.00	0.00	NS				5.6
	Millville 86	N	Pumpkinseed	5.7	5.7	29	NS	NS	NS	NS	NS	0.30	<.1	<.1	0.00	0.00	NS	NS		·	5.0
	Millville 86	N	Largemouth bass	10.2	10.6	29	NS	NS	NS	NS	NS	0.10	<.1	<.1	0.00	0.00	NS	NS			2.5
	Millville 86	N	Shorthead redhorse	13.3	13.0	29	NS	NS	NS	NS	NS	0.10	<.1	<.1	0.00	0.00	NS	NS			1.9
	Millville 86	N	Rock bass	5.8	5.8	29	NS	NS	NS	NS	NS	0.10	<.1	<.1	0.00	0.00	NS	NS			1.8
	Millville 86	N	Golden redhorse	14.3	13.7	29	NS	NS	NS	NS	NS	0.10	<.1	<.1	0.00	0.00	NS	NS			1.7
	Millville 86	N	Margined madtom	3.7	3.7	29	NS	NS	NS	NS	NS	0.10	<.1	<.1	0.00	0.00	NS	NS			1.3
	Millville 86	N	Green sunfish	8.2	6.1	29	NS	NS	NS	NS	NS	0.00	<.1	<.1	<.1	<.1	NS	NS			1.1
	Millville 86	N	White crappie	8.3	8.3	29	NS	NS	NS	NS	NS	<.1	<.1	<.1	0.00	0.00	NS	NS			1.0
	Millville 86	N	11 other spp			29	NS	NS	NS	NS	NS	0.20	<.1	<.1	<.1	0.00	NS	NS			2.8
	Millville 86	N	TOTAL			29	NS	NS	NS	NS	NS	6.0	0.6	0.4	<.1	<.1	NS	NS			
	Greenup L+D	N	Gizzard shad	4.0		33				68.19			0.00			5930.00					94.0
	Greenup L + D	N	Gizzerd shad	11.0		33				18.13			0.00			0.00					
	Greenup L+D	N	Gizzard shad	3.0		33				0.00			1.63			0.00					
	Greenup L+D	N	Gizzard shad	7.0		33				0.00			7.36			0.00					
	Greenup L+D	N	Freshweter drum	4.0		33				11.06			0.00			253.10					5.0
	Greenup L+D	N	Freshwater drum	8.0		33				1.16			0.40			0.00					
	Greenup L+D	N	Freshwater drum	11.0		33				3.14			0.00			0.00					
	Greenup L+D	N	Freshwater drum	13.0		33				1.16			8.10			0.00					

	H. Monthly and Annual Entrainment Rate by Species																			
	H1	H2	НЗ	H4	H5	Н6	H7	H8	Н9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20
Plant Name	Basis (Net or Hydroacoustics)	Species Name	Average Size (in)	Median Size (in)	% of Total Plant Capacity Represented	Jan (fish per hour)	Feb	Mar	Арг	May	mſ	lat	Aug	Sept	Oct	Nov	Dec	Total Annual (fish/hour)	Total Annual (number)	Species Percentage of Total Entrained
	-		_	-						_										
Station 26 (1989)	HA	TOTAL	 	├	100						8.80	24.60	115.40	55.90	128.70	13.80	0.80	30.79	269727	100.0
Station 26 (1990)	НА	TOTAL			100	0.40	3.80	1.50	2.80	9.00	6.80	23.20	38.50	37.30	61.50				ļ	

A3.1-43

Appendix 3.2 - Narrative Portion of Database.

Explanatory Comments, Principal Study Conclusions and Agency/Applicant Comments.

Project Name: Alcona FERC #: 2447: Au Sable River, MI (8 MW)

Explanatory Comments: Percent composition was based on a total net catch of 177 fish. Fish length data are available but not easily summarized for this database. Entrainment numbers were estimated by extrapolating the number of fish in the volume of water sampled to the total amount of water that passed monthly through the plant. Net catch was adjusted to exclude those fish too wide to fit through the trash racks. Entrainment rates derived from partial flow tailrace netting should be used with caution; their primary intent was to provided species composition and length frequency data for hydroacoustically estimated entrainment rates. Monthly hydroacoustic estimates of entrainment not yet presented due to sampling periods overlapping months; applicant may be able to provide monthly data. The white suckers collected in the spring probably represented downstream-entrained individuals moving into the tailrace to spawn.

The minimum detectable hydroacoustic target size was estimated to be two to three inches long under optimal conditions.

Two partial flow tailrace nets were deployed in each tailrace bay. The mouth of each partial flow tailrace net was 1 meter square and 18 ft. long with 1 inch square mesh nylon netting. Estimated discharge areal coverage of the partial flow nets was 5.0 percent.

<u>Principal Study Conclusions</u>: Hydroacoustic data indicated that peak entrainment occurred from May to August and November-December. (What species were entrained during December is unknown since no fish were collected in the net samples. S&W). Forty-one percent of the fish passed through the left-hand side of the intakes, 40 percent passed through the right-hand side and 19 percent passed through the center of the intakes.

The relative abundance of fish in Alcona Pond (Table 3-72, Binder 4) was as follows:

Yellow perch:

28.45%

Rock bass:

28.17%

White sucker:

15.12%

Brown bullhead:

3.88%

Smallmouth bass:

3.88%

Agency/Applicant Comments: Michigan DNR indicated that they have problems with both the hydroacoustic and netting sections of this study. Netting probably had significant problems with infiltration, net avoidance, and low net efficiency. They believed the netting effort was insufficient to provide reliable entrainment estimates. They recommended not using this study in the analysis (letter to D. Hjorth from G. Whelan, MDNR, dated April 28, 1993).

Project Name: Cooke FERC #: 2450: Au Sable River, MI (9 MW)

Explanatory Comments: Percent composition was based on a total net catch of 138 fish. Fish length data was available but not easily summarized for this database. Entrainment numbers were estimated by extrapolating the number of fish in the volume of water sampled to the total amount of water that passed monthly through the plant. Net catch was adjusted to exclude those fish too wide to fit through the trash racks. Entrainment rates derived from partial flow tailrace netting should be used with caution; their primary intent was to provide species composition and length frequency data for hydroacoustically estimated entrainment rates. Monthly hydroacoustic estimates of entrainment were not presented in the database due to sampling periods overlapping months; Applicant may be able to provide monthly data.

The minimum detectable hydroacoustic target size was estimated to be 1.75 inches under optimal conditions.

Two nets were deployed in the tailrace of each unit. Each net had a 1 meter by 1 meter square mouth and was 18 ft. long with 1 inch square mesh nylon netting. Estimated discharge areal coverage of the partial flow nets was 6.0 percent.

<u>Principal Study Conclusions</u>: Hydroacoustic data indicated that peak entrainment occurred in October and November. Young-of-the-year yellow perch were most abundant during the fall; yearlings were most abundant during the spring. Black crappie that were 3 and 4 year olds were most common in the summer; young-of-the-year black crappies were common in the fall.

The relative abundance of fish in Cooke Pond (Table 3-109, Binder 4) was as follows:

Emerald Shiner: 31.39% Yellow perch: 18.94% Pumpkinseed: 8.54% Black crappie: 8.29% Rock bass: 6.31% Spottail shiner: 5.84%

Agency/Applicant Comments: Michigan DNR indicated that they have problems with both the hydroacoustic and netting sections of this study. Netting probably had significant problems with infiltration, net avoidance, and low net efficiency. They believed the netting effort was insufficient to provide reliable entrainment estimates. They recommended not using this study in the analysis (letter to D. Hjorth from G. Whelan, MDNR, dated April 28, 1993).

Project Name: Mio FERC #: 2448: Au Sable River, MI (5 MW)

Explanatory Comments: Percent composition was based on a total net catch of 294 fish. Fish length data was available but not easily summarized for this database. Entrainment numbers were estimated by extrapolating the number of fish in the volume of water sampled to the total amount of water that passed monthly through the plant. The net catch was adjusted to exclude those fish too wide to fit through the trash racks. Entrainment rates derived from partial flow tailrace netting should be used with caution; their primary intent was to provide species composition and length frequency data for hydroacoustically estimated entrainment rates. Monthly hydroacoustic estimates of entrainment were not presented in the database due to sampling periods overlapping months; applicant may be able to provide monthly data.

The minimum detectable hydroacoustic target size was estimated to be 1.75 inches under optimal conditions and 3-4 inches under less favorable conditions such as periods of high discharge.

Two nets were deployed in the tailrace of each unit. Each net had a 1 meter by 1 meter square mouth and was 18 ft. long with 1 inch square mesh nylon netting. Estimated discharge areal coverage of the partial flow nets was 5.0 percent.

Principal Study Conclusions: Hydroacoustic data showed even distribution of fish across the Unit 1 intake but not Unit 2. Only 19 percent of the fish detected entering Unit 2 passed through the center of the intake forebay (i.e., most passed through along the sides). Peak entrainment was noted during May and October. Smallmouth bass were entrained mostly during the warmer months, ranging in size from 5.1 to 15.9 inches (Age 3 to 8). Rock bass peak entrainment was noted in September, whereas young-of-the-year recruitment was noted in July. Most rock bass were age 3 to 5. White sucker (age 3 to 5) were mostly collected in the fall, and walleye (age 2 to 5) were collected in the spring.

The relative abundance of fish in Mio Pond (Table 3-57, Binder 4) was as follows:

White sucker: 20.86% Spottail shiner: 16.39% Brown bullhead: 12.85% Rock bass: 10.06% Yellow perch: 6.89%

Agency/Applicant Comments: Michigan DNR indicated that they have problems with both the hydroacoustic and netting sections of this study. Netting probably had significant problems with infiltration, net avoidance, and low net efficiency. They believed the netting effort was insufficient to provide reliable entrainment estimates. They recommended not using this study in the analysis (letter to D. Hjorth from G. Whelan, MDNR, dated April 28, 1993).

Project Name: Croton FERC #: 2468: Muskegon River, MI (8.8 MW)

Explanatory Comments: Percent composition was based on a total net catch of 851 fish. Fish length data was available but not easily summarized for this database. Entrainment numbers were estimated by extrapolating the number of fish in the volume of water sampled to the total amount of water that passed monthly through the plant. The net catch was adjusted to exclude those fish too wide to fit through the trash racks. The spatial distribution of fish within each turbine bay could not be adequately evaluated by using hydroacoustics because of high-turbulence interference. Entrainment rates derived from partial flow tailrace netting should be used with caution; their primary intent was to provide species composition and length frequency data for hydroacoustically estimated entrainment rates. Monthly hydroacoustic estimates of entrainment were not presented in the database due to sampling periods overlapping months; applicant may be able to provide monthly data.

The minimum detectable hydroacoustic target size was estimated to be 1.75 inches under optimal conditions and 3 inches under less favorable conditions such as during periods of high discharge.

Two nets were deployed in the tailrace of each unit. Each net had a 1 meter by 1 meter square mouth and was 18 ft. long with 1 inch square mesh nylon netting. Estimated discharge areal coverage of the partial flow nets was 4.5 percent of the two horizontal turbine unit bays and 9.0 percent in the two vertical unit bays.

Entrainment was estimated separately for two horizontal and two vertical turbine units. Units 3 and 4 were only sampled in the summer and fall seasonal periods. The Croton impoundment backs up both the Muskegon and Little Muskegon rivers.

Principal Study Conclusions: Hydroacoustic data indicated that 68 percent of entrainment occurred from May 20 to August 11. It also indicate little difference in fish densities between the two turbine bays and between the upper and lower water column transducers in each bay. Young-of-the-year bluegill recruitment was noted in July along with limited yellow perch recruitment. Black crappie peak entrainment was in November, mostly young-of-the-year, whereas adults were dominant in the earlier months.

The relative abundance of fish in Croton Pond (Table 3-23, Binder 6) was as follows:

Spottail shiner: 71.5%
Bluegill: 22.6%
Yellow perch: 2.8%
Logperch: 2.6%
Smallmouth bass: 0.2%

Agency/Applicant Comments: Michigan DNR indicated that they have problems with both the hydroacoustic and netting sections of this study. Netting probably had significant problems with infiltration, net avoidance, and low net efficiency. They believed the netting effort was insufficient to provide reliable entrainment estimates. They recommended not using this study in the analysis (letter to D. Hjorth from G. Whelan, MDNR, dated April 28, 1993).

Agency/Applicant Comments: Michigan DNR indicated that they have problems with both the netting section of this study. Netting probably had significant problems with infiltration, net avoidance, and low net efficiency. They believed the netting effort was insufficient to provide reliable entrainment estimates. They believed the netting effort was insufficient to provide reliable entrainment estimates. They recommended not using this study in the analysis (letter to D. Hjorth from G. Whelan, MDNR, dated April 28, 1993).

Project Name: Moores Park FERC #: 10684: Grand River, MI (1.08 MW)

Explanatory Comments: Annual hydroacoustic entrainment estimates were calculated by Stone & Webster and are very conservative. Applicant should confirm the assumptions made in this calculation. Hydroacoustic samples were collected bi-weekly, from noon Tuesday until noon Friday. A total of 104 days were sampled by hydroacoustics. Netting generally encompassed 24 hours. A total of 18 samples were collected for a total of 444.1 hours. Monthly entrainment rates were not readily apparent due to sampling periods overlapping months; applicant may be able to provide monthly netting and hydroacoustic data. Total netting catch was 4731 fish.

The minimum hydroacoustic target size was estimated to be 2 inches.

"Controlled fish release studies" were conducted and 68% of the fish released were recovered. This was not indicative of the net efficiency due to retention of fish in the turbine pit. The average recapture rate for live fish was 47%. Netting numbers were not adjusted for collection efficiency since the hydroacoustic counts were considered most representative of actual entrainment. The nets (one on each tailrace bay) were 13 ft. deep and 16 ft long with 0.25 inch bar knotless nylon mesh netting.

Forebay temperature, dissolved oxygen and Secchi disc data are available in Appendix A of the study report.

Principal Study Conclusions: The average hourly entrainment rate based on hydroacoustics was listed as 4.9 fish/hour (this is different from the total estimated annual entrainment divided by the number of hours in the year, which is 1.63/hour. S&W). Most (70%) entrainment occurred between noon and midnight. Most fish were detected at midwater. When both units were operating simultaneously, the south unit entrained twice as many fish as the north unit, due probably to north unit wicket gate problems. Most (91%) of hydroacoustically detected fish were 8 inches or less in length (16% were 4 inches or less in length). In the net sampling, 94% of the fish collected were less than 8 inches in length. There was no statistical difference between the numbers of fish collected in the tailrace nets and concurrent hydroacoustic estimates. Entrainment rates peaked in October/November with lesser peaks in March/April and late August. The lowest rates were in early January and mid-May. Mean daily entrainment rate was 117 fish/day, ranging from 17 to 640 fish/day.

No endangered fish were collected in the net samples.

Agency/Applicant Comments: The Michigan DNR had significant problems with the hydroacoustic portion of this study (no correlation between netting and hydroacoustics). Net efficiency studies were also consider problematical because of fish hanging up in the large forebay and discharge areas. They considered the results of this study fair (letter to D. Hjorth from G. Whelan, MDNR, dated April 28, 1993).

Project Name: Kleber FERC #: 10615: Black River, MI (1.2 MW)

Explanatory Comments: Hydroacoustic and tailrace netting were only used at one unit. The relative abundance was based on a total collection of 5171 fish. Total netting effort was 298.2 hours. The net mouth was 16.5 ft by 17 ft with a length of 20 ft and 0.25 inch bar knotless nylon mesh. The entrainment numbers were not adjusted for net efficiency (it was listed as 97%) since the hydroacoustically derived entrainment estimates were considered to be the most representative of actual conditions. Net efficiency was determined by releasing fish in front of the turbines.

The minimum estimated hydroacoustic target size was estimated to be 2 inches.

<u>Principal Study Conclusions</u>: Entrainment peaked in mid-June based on hydroacoustic data, with a lesser peak in the fall. Lowest entrainment rates were observed from November to early April. Diel catch was variable, with peak rates near midnight. The vertical distribution was uniform. Most (93%) entrained fish were 100 mm or less in length. When hydroacoustics sampled concurrently with nets, hydroacoustics predicted the net catch well.

Agency/Applicant Comments: The Michigan DNR considered this study to be among the best hydroacoustic studies conducted (high correlation between net and hydroacoustic catch). They recommended including this study in the database (letter to D. Hjorth from G. Whelan, Michigan DNR, dated April 28, 1993).

Project Name: Constantine FERC #: 10661: St. Joseph River, MI (1.2 MW)

Explanatory Comments: The entrainment estimate was based on the collection of 830 fish during 480 hours of net sampling. The geometric mean of fish collected during each sampling date was used for extrapolation purposes. The consultant justified this methodology because of the non-normal distribution of the catch data. The average collection efficiency of mostly small bluegills was 21.7%. The reason for this low collection efficiency was believed to be related the fact that the full flow net was only attached at each of the four corners. This allowed escapement as the net billowed out. The entrainment catch does reflect an adjustment for collection efficiency. Collection efficiency was determined by through-turbine releases. The net mouth was 10 ft by 17 ft with a 0.25 in mesh inner liner throughout the entire net. (This comparatively small mesh would exacerbate the billowing problem previously mentioned. S&W). The period from November to March was represented by a collection in mid-December and another in early January.

Plant capacity (1720 cfs) is exceeded 38 % of an average year. The temperature during the entrainment study ranged from 0-27.2 C.

<u>Principal Study Conclusions</u>: In general, more fish were collected at night. The catch was dominated by young-of-the-year fish except for mimic shiners. No state or federally listed species of fish occur in the project impoundment although river redhorse, which is listed by the State of Michigan as threatened, was collected downstream of the project.

Dominant species in the river near the project were as follows:

 Bluntnose minnow:
 21.6%

 Bluegill:
 15.5%

 Sand shiner:
 14.2%

 Logperch:
 10.2%

 Spotfin shiner:
 7.4%

Agency/Applicant Comments: The Michigan DNR suggested including this study in the database although they had some problems with the amount of sampling effort both temporally and spatially (letter to D. Hjorth from G. Whelan, MDNR, dated 4/28/93).

Project Name: Escanaba FERC #: 2506: Escanaba River, MI (1.95 MW Dam 1 and 2.5 MW Dam 3)

Explanatory Comments: Fish known to occur only downstream of Dam 1 were assumed to have intruded in the net sample and were excluded from the analysis (e.g., splake). The total number of fish collected at Dam 1 during 14, forty-eight hour sampling periods was 3445 including all species. However, when downstream intruders were eliminated, the total catch of entrained fish was 2312. At Dam 3, a total of 1615 fish were collected during 14, seventy-two hour sampling periods. No fish were excluded from analysis at Dam 3. The entrainment estimates were derived by extrapolating the number of fish per volume sampled to the total volume passing through the plant during a given interval. (The annual entrainment was adjusted to reflect dates when the plant records showed the plant as not operating, e.g. Table 4.7, but Appendix 1 shows flow through the plant on all dates. If the plant was actually not operating, than the annual rate of 5.2 fish /hour should be adjusted to reflect 39 days less of plant operation. This will effectively increase the estimated annual entrainment rate to 5.8 fish/hr. S&W).

Only Unit 2 was sampled by net at Dam 1; only Unit 1 was sampled at Dam 3. The mouth of the Dam 1 net was 15 ft by 14 ft and 25 ft long with 1.5 inch bar mesh netting. The back half of the net was lined with 0.5 inch netting. The Dam 3 net was similar except the mouth of the net was 18 ft by 12 ft. Net efficiency was determined by releasing marked fish directly into the mouth of the net.

Principal Study Conclusions: At both dams there were no large fluxes of fish passing through the turbines.

Dam 1: The highest entrainment rate was in June, after the spring runoff (39 % of the total catch and an estimated entrainment rate of 1200 fish /day). Most of these fish were sunfish which may have been moving towards spawning or summer residence areas. The intake to the project is on the right side of the dam, near a shallow portion of the pond. Another peak in October consisted primarily of young-of-the-year fish. The smallest fish (e.g., less that 2.5 inches in length) were the most susceptible to entrainment. There was no consistent diurnal trend evident for all species except black crappies were more frequently entrained at night. Most black crappies were juveniles.

Dam 3: The highest entrainment rate occurred in April, prior to the spring runoff (38 % of the annual catch). Consistently more fish of all size classes and species groupings were entrained at night. Peak species entrained at this plant were minnows. A secondary peak in June was primarily attributable to sunfish. The powerhouse at Dam 3 is near the center of the dam and away from shallow water. This may explain why fewer sunfish were entrained at this site compared to Dam 1.

Agency/Applicant Comments: According to the Michigan DNR net efficiency tests were not conducted at these sites, thus the data should not be used or should be used with great caution (letter to D. Hjorth from G. Whelan, MDNR, dated 4/28/93). (Net efficiency was derived in this study by direct releases into the net. Refer to page 4-9 of the study report for net efficiency values. S&W)

Project Name: Lock & Dam #2 FERC #: 4306: Mississippi River, MN (4 MW)

Explanatory Comments: Relative abundance and length frequency distribution were based on the collection of 422 fish during 186.4 hours of sampling. The net was suspended 25 feet upstream of the trashracks. (The water velocity in the mouth of the net was not provided. If velocity was low, fish may have been able to swim out of the net thus biasing the net catch results. S&W>). A mid-water trawl with a mouth that measured 10 ft by 9 ft and a length of 25 feet was used (one inch stretch mesh). The monthly size range by species was presented (Table 8 of the study report) but not readily summarized.

Hydroacoustics sampled 12825 unit hours from 7 June to 18 April. Net sampling was normally conducted 4 hours around dusk and 4 hours around dawn every two weeks. Two additional, 24 hour net samples were taken with hydroacoustic techniques. An annual entrainment estimate was not presented in the report. This is because the plant was not operated during May, usually a relatively high entrainment month. A total annual entrainment estimate that did not include May entrainment would not be comparable to entrainment estimates at other sites.

The minimum hydroacoustic target size was estimated to be 2.5 inches.

The plant was shut down from June 21, 1990, to July 3, 1990, and November 2-6, 1990, due to high tailwater elevations. After April 18, both units were shut down for repairs. Fish passage options at this site include spillage, lockage, and through turbines. Daily plant flow data was provided but not readily summarized.

<u>Principal Study Conclusions</u>: Entrainment was highest in June and October, 1990, and lowest in August, 1990 and December, 1990, to February, 1991. Average entrainment was estimated to be 389 fish/day. The highest entrainment was between 0700 and 0900 hours. The least number of fish were entrained during the hours represented by 0500 and 1800. There were more fish in the upper portion of the water column. Mostly gizzard shad, primarily young-of-the-year, were collected in the fall. Rosyface shiners were the most abundant species for the remainder of the year.

Agency/Applicant Comments: The Wisconsin Department of Natural Resources, the Michigan Department of Natural Resources and the U.S. Fish and Wildlife Service regional office provided numerous comments on the entrainment studies conducted at Park Mill. The Agencies provided consolidated comments to the applicant. The major points are summarized below:

- The netting studies were conducted well and met the study plan objectives. However, the use of hydroacoustics to determine net efficiencies was considered inappropriate.
- The methodology and procedures used in hydroacoustic analysis of entrainment concerned the agencies. Specifically, the validity of extrapolating counts to areas not ensonified, the appropriateness of the filters used to screen the data (were fish counts omitted?), the questionable nature of insect larvae being counted as fish, variability among trained scientists reading the same echograms and how these counts related to the computer generated counts and the questionable assumption of laminar flow at the intake.
- There was little correlation between the netting data and the hydroacoustic data.
- The actual study deviated from the original approved plan.
- The agencies mutually decided to recommend use of the hydroacoustic estimates from an earlier (1987) study and rely upon 1991 netting data for species and size information.

Sources: letter to R. Walk from G. Whelan, MDNR, dated 1/28/92; memo to J. Dawson and J. Meldrim from T. Thuemler, WDNR, dated 1/28/92; letter to R. Walk from J. Smith, USFWS, dated 4/1/92; letter to R. Walk from G. Whelan dated 6/15/92; letter to R. Walk from J. Smith dated 6/17/92; letter to R. Walk from N. Kutchery, WDNR, dated 6/17/92; all provided to D. Hjorth from K. Scheidegger, WDNR, by letter dated 2/19/93.

The licensee responded to questions of the methodology and procedures of hydroacoustic technique for entrainment estimates.

The Wisconsin DNR reiterated that problems still remain in resolving discrepancies between the agency and licensees entrainment estimate. They pointed out that the net efficiency information included in the database were taken from other studies and not applicable to the study conducted at Park Mill. They recommended not including this study in the database or only using the netting portion of the data (letter to D. Hjorth from T. Thuemler, WDNR, dated 4/9/93).

Agency/Applicant Comments: The Michigan DNR had numerous concerns with entrainment estimates derived from fixed-location, unattended hydroacoustic systems. They were also concerned that Unit 2 was down for most of the study and that there was extremely high variability between bays and units. Resource agencies originally recommended dual beam transducers at all units, whereas they were actually only used at Unit 2. Target strength estimated length from hydroacoustics was very different from fish measured from net collections (0.63% of the net catch was over 400 mm in length whereas the hydroacoustic estimate indicated that 42.6% of the entrained fish were over 400 mm). (Letter to R. Hayen from W. Houghton, MDNR, dated 8/17/92 provided to D. Hjorth from K. Scheidegger, WDNR, by letter dated 2/19/93). Wisconsin DNR concurred with Michigan DNR comments. Both believed that entrainment was underestimated by the licensee due to inappropriate net efficiency adjustments. WDNR revised the entrainment estimates using different (shape and length dependent) adjustment criteria (letter to R. Hayen from N. Kutchery, WDNR, dated 8/21/92, provided to D. Hjorth by K. Scheidegger, WDNR, by letter dated 2/19/93).

Wisconsin DNR indicated that the entrainment data presented in the draft database was not from the final report (letter to D. Hjorth from T. Thuemler, WDNR, dated 4/9/93). A review of the data indicated that the entrainment data included in the draft database was extracted form the final report.

Project Name: Thornapple FERC #: 2475: Flambeau River, WI (1.4 MW)

Explanatory Comments: Net efficiency was determined by releasing fish directly into the net-80% were recaptured. Those fish not recaptured were assumed to be fish left in the pit or net. Fish released ahead of the turbines resulted in a capture rate of 68.2%. This number was adjusted upward to reflect the proportion "left in the pit or net" to arrive at an overall efficiency of 85.3%.

Net sampling for 864 hours resulted in the collection of 3378 fish. Monthly and annual entrainment was estimated by extrapolating the collection rate to the time that the units were operating and also by flow volume sampled relative to the flow volume that passed through the plant. The latter was viewed as the most appropriate estimate (64,000 vs. 61,000 fish annually, respectively) because it was based on smaller and more precise units of measurement (cfs). Collected fish with body widths greater than the trash rack bar spacing were subtracted from their database (67 fish). The average entrainment rate of November and March was used to account for those months not sampled (December, January and February).

The net mouth was 14 ft by 13 ft. It was 50 ft long with 0.75 inch mesh (0.25 inch for the last 15 ft.).

Principal Study Conclusions: Approximately 80% of the fish collected were less than 6.0 inches in length-59% were between 2.0 and 3.9 inches long. Of this 59%, 28% were panfish, 24% minnows, and 15% bass. Entrainment numbers were positively correlated with the abundance of young-of-the-year fish. Weather, including wind, seemed to have no effect on entrainment numbers. There was no positive correlation observed between total river flow or total flow through the plant and the number of fish entrained. Time specific entrainment patterns were generally not observed.

Agency/Applicant Comments: The Wisconsin DNR indicated that the results of this study should be included in the database (letter to D. Hjorth from T. Thuemler, WDNR, dated 4/9/93).

The applicant indicated that the entrainment results are considered preliminary. Resource agencies have asked the applicant to recompute the entrainment numbers based on size and species-specific categories of fish used for net efficiency estimates (letter to F. Winchell from L. Everhart, Northern States Power Co., dated 6/2/93).

Project Name: Upper FERC #: 2640: North Fork Flambeau River, WI (0.9 MW)

Explanatory Comments: This site was sampled by hydroacoustics only. An indication of the species composition can be obtained from the Crowley net data and the Upper Flowage fish sampling program conducted by the Wisconsin DNR in 1990. The hydroacoustic entrainment estimate is for fish greater than 1.75-2.0 inches in length.

Hourly turbine flow data is presented for the entire year but not readily summarized for inclusion in the database.

<u>Principal Study Conclusions</u>: The highest estimated daily entrainment rate was on April 8, 1992 (1874 fish). There was no defined diel trend in entrainment.

The Upper impoundment is very similar to Crowley. It has an average depth of 9.1 ft. The population of walleye was larger in the Crowley Flowage (19/acre) than in the Upper flowage (6/acre). Other gamefish were more abundant in the Upper Flowage compared to Crowley. The estimated populations of gamefish were as follows: walleye- 2681; northern pike- 1613; lake sturgeon- 879; and muskellunge- 346. These gamefish comprised 27.9% of all fish collected in the impoundment. Panfish comprised 24.1% of all collected in the impoundment (49.7% of those were pumpkinseeds) and rough fish comprised 72.8% of the fish collected (72.8% of these were silver redhorse, which comprised 35% of all fish collected in the impoundment). Fishing pressure was highest (28 hrs/acre during the summer) in the Upper Flowage compared to Crowley, Lower, and Pixley. The state listed (threatened) greater redhorse is confirmed to be present in the Upper Flowage. This species is not federally listed.

Project Name: Pixley FERC #: 2395: North Fork Flambeau River, WI (0.96 MW)

Explanatory Comments: This site was sampled by hydroacoustics only. An indication of the species composition can be obtained from the Crowley net data and the Pixley Flowage fish sampling program conducted by the Wisconsin DNR in 1990. The hydroacoustic entrainment estimate is for fish greater than 2.5 inches in length.

Hourly turbine flow data for the entire year is presented in the study report but not readily summarized for this database.

<u>Principal Study Conclusions</u>: The highest estimated daily entrainment occurred on October 9, 1991 (4230 fish).

The impoundment is best characterized as having a cool to moderately warmwater fishery. Aquatic vegetation is abundant throughout the reservoir. WDNR fishery investigations show that the Pixley and Crowley impoundments have similar fishery resources. They found similar population estimates for top predators in both impoundments: walleye- 19/acre in Crowley impoundment and 16/acre in Pixley impoundment; northern pike- 0.36/acre in Crowley impoundment and 1.55/acre in Pixley impoundment; and muskellunge- 0.03/acre in Crowley impoundment and 0.09/acre in Pixley impoundment. Catch per unit effort of white suckers was also similar in both impoundments (23.3/hour of electrofishing at Pixley and 22.9/hour at Crowley).

Project Name: Wisconsin River Division FERC #: 2590: Wisconsin River, WI (1.8 MW)

Explanatory Comments: Net sampling was conducted in the tailrace of Unit 1, a mid-channel unit. Net efficiency was determined by releasing dyed fish into the mouth of the net during June, August and November. Test fish ranged in length from 29 to 179 mm. The mouth of the net was 18 ft by 17 ft. It was 40 ft long with 0.75 inch bar mesh and the rear half lined with 0.25 inch bar mesh netting. Entrainment was estimated by expanding the number of fish collected in the volume of water that passed through the net to the total volume passing through the plant. Fish that were obviously dead prior to passage were not included in the entrainment estimate. A total of 1200 fish were collected. The only option to turbine passage is spillage over the dam. Hydroacoustic sampling was conducted but the results were rejected because of excessive noise and the prevalence of small fish.

<u>Principal Study Conclusions</u>: Significant regional sportfish present in this flowage include walleye, smallmouth bass, bluegill, and white and black crappie. No state or federally listed species were collected.

Population estimates based on electrofishing data obtained in September, 1991, (generally Age I fish and older) were as follows:

Bluegills (>2")- 10,571 (44.0/acre)
Smallmouth bass (>4")- 13,553 (56.5/acre)
Black crappie (>2")- 12,701 (52.9/acre)
Walleye (>8 in.)- 3,685 (15.3/acre)

Agency/Applicant Comments: The Wisconsin DNR indicated that the results of this study should be included in the database (letter to D. Hjorth from T. Thuemler, WDNR, dated 4/9/93).

Project Name: Shawano (Balsam Row) FERC #: 710: Wolf River, WI (0.7 MW)

Explanatory Comments: Two nets were used to sample the two discharge bays of this single unit plant. The full flow tailrace nets had 0.75 inch bar knotted nylon netting with a full 0.25 inch bar knotless nylon liner. A total of 3650 fish were collected during approximately 840 hours of net sampling. Net efficiency was determined by releasing fish into the net during each 24 hour sampling period. Through turbine releases were made to assess turbine mortality and to serve as a check of net efficiency.

Hydroacoustic data was supplemented with netting data for June and 15 days of July to derive the estimated total entrainment for this technique. Netting data was supplemented by hydroacoustic data during February to derive the total annual entrainment estimate by netting.

Hourly turbine flow data is presented in the study report but not readily summarized to fit this database.

<u>Principal Study Conclusions</u>: Hydroacoustic sampling indicated that the riverside intake had 12% of the detected targets, the center opening had 33% of the detected targets and the shoreside intake had 55% of the detected targets. Hydroacoustics were considered to be the primary method of entrainment estimation. Hydroacoustic and netting results during coincident sampling days showed that similar entrainment estimates could be made by using either technique. Fish 6 inches in length or shorter predominated the total entrainment numbers.

Agency/Applicant Comments: The Wisconsin DNR, in a letter to Dennis Geary from Thomas Thuemler dated August 28, 1992, (provided to D. Hjorth by K. Scheidegger, WDNR, by letter dated 2/19/93) expressed concern that rips in the netting may have biased the data that was collected prior to June 28, 1991. They did not agree that similar entrainment estimates could be derived from netting and hydroacoustic data. WDNR provided additional comments in a letter dated January 15, 1993. They indicated that the net efficiency determinations should have been derived by through turbine releases rather than releases directly into the net. They also did not agree with the use of a single net efficiency value. They prefer developing separate size and shape dependent net efficiencies. They did not accept the net efficiency studies and recommended conducting new efficiency studies using guidelines developed by the WDNR and the regional office of the USFWS.

Project Name: 99 Islands FERC #: 2331: Broad River, SC (18 MW)

Explanatory Comments: Entrainment estimates were derived from net data based on 68 hours of daytime netting (0800 hrs - 1700 hrs). Two recovery nets attached to one frame sampled the entire Unit 4 discharge. Each net was 4.1 m by 3.2 m by 10.1 m. Netting was 0.75 inch bar mesh knotted nylon. The first two hour sample of the four samples collected during each month sampled represented unit start-up conditions. The three remaining two hour samples represented steady state operating conditions. There were no trends evident between these two types of samples and they were combined for analytical purposes. Total plant entrainment was estimated by expanding the hourly rate derived from sampling to allow for all unit operation time during each month. Entrainment at all units was assumed to be similar to the unit sampled. Net efficiency was determined by through-turbine releases of fish.

Hydroacoustics sampled 2042 hours of plant operation from February to November, 1990 (except October). Data was collected for 50% of each month sampled. Target strengths greater than 100 mm (4 inches) were counted. Because the entrainment estimates derived by netting and hydroacoustics were statistically similar, the hydroacoustic numbers were "calibrated" based on netting catch adjusted for netting efficiency. This process also included adjusting the hydroacoustic counts to account for the proportion of fish collected in the nets that were less than 100 mm long.

Length data for individual specimens provided but not summarized. Hourly rates for Unit 4 by species and month are provided in the report.

<u>Principal Study Conclusions</u>: Based on netting data, 43% of the entrained fish were non-game species. Tailrace intrusion was believed to occur, resulting in high net-estimated entrainment rates. No adjustments were made for intrusion even though size and habitat preference indicated that some fish were not reservoir dwelling. Adjustments were made to account for netting efficiency.

Hydroacoustic data showed that entrainment rates were higher at night during February, March and November but higher in daylight for the other months sampled. Most fish were near the top of the intake and 69% were less than 150 mm in length based on target strength. Only 3% of the fish were detected within the 5 meter depth interval where the water velocity (0.55 m/sec) was considerably lower than the 1.03-1.78 m/sec water velocity measured at the 1-4 meter depth intervals.

Project Name: Saluda FERC #: 2406: Saluda River, SC (2.4 MW)

Explanatory Comments: Entrainment estimates were derived from net data based on 48 hours of daytime netting (0800 hrs - 1700 hrs). One recovery net attached to a frame sampled the entire Unit 1 discharge, although isolating the entire Unit 1 discharge from the other three units was virtually impossible and some sampled flow may have been from adjacent units. The net was 2.6 m by 2.6 m by 6.1 m. Netting was 0.75 inch bar mesh knotted nylon. The first two hour sample of the four samples collected during each month sampled represented unit start-up conditions and the remaining three two hour samples represented steady state operating conditions. There were no trends evident between these two types of samples and they were combined for analytical purposes. Total plant entrainment was estimated by expanding the hourly rate derived from sampling to allow for all unit operation time during each month. Entrainment at all units was assumed to be similar to the unit sampled. Six months of the year were actually sampled and rates for three months were extrapolated. March, April and May were not evaluated. The projected entrainment based on netting of 87274 fish is only for a nine month period.

Hydroacoustics sampled 1587 hours of plant operation from January 1990 to January, 1991. Unit 1 operated very little in May, September and November and not at all in July due to mechanical problems. Hydroacoustics sampled Unit 2 in December 1990 and January 1991. Data was collected for 50% of each month sampled. Target strengths greater than 100 mm (4 inches) were counted. Because the entrainment estimates derived by netting and hydroacoustics were statistically similar, the hydroacoustic numbers were "calibrated" based on netting catch adjusted for netting efficiency. This process also included adjusting the hydroacoustic counts by the proportion of fish collected by netting that were less than 100 mm long. Net efficiency was determined by through-turbine releases of fish.

Length data for individual specimens was provided but not summarized. Hourly rates for Unit 4 by species and month are provided in the report.

Principal Study Conclusions: Net estimated entrainment was highest in October and lowest in September. Of those fish collected, 48% were non-game species. Tailrace intrusion into the collection net was believed to occur. Hydroacoustic data showed higher catches at night in March, April, May and October, but entrainment during daylight in January (both 1990 and 1991), June, November and December. Depth distribution was skewed toward the top of the intake from November to January (1991), but no vertical trend was evident for the rest of the year. Target strength analysis indicated that 56% of the entrained fish were less than 150 mm in length and that the length frequency distribution changed little over the course of the year. Although the net and hydroacoustically derived entrainment rates were statistically similar, the net derived rates were often higher than the acoustically derived rates. The spring hydroacoustic rates were accepted by the agencies even though there was no netting during the comparable period. They agreed to assume that length distribution and species composition for this period was the same as for the pooled nine months of netting data.

Project Name: Buzzards Roost FERC #: 1267: Saluda River, SC (15 MW)

Explanatory Comments: Tailrace netting was conducted for a total of 128 hours. High initial threadfin shad catches in December caused net failure, which reduced the sampling effort until the nets could be repaired. Two identical nets were used to sample the flow from the two Unit 2 draft tubes. The nets had a mouth that measured 3.05 m by 3.05 meters. They were 10.67 meters long with 0.75 inch bar nylon netting. Longnose gar, American eel and blackbanded darters in the net collections were believed to be tailwater intruders and not included in the entrainment estimate. Entrainment was estimated by expanding the empirically derived hourly rate by the number of hours each unit operates in a typical year. Entrainment at unsampled units 1 and 3 was assumed to be similar to that at Unit 2. (There were apparently no net efficiency studies conducted. Net data was only intended to provide species composition and length frequency data. S & W.)

Hydroacoustics sampled all 3964 hours of plant operation during the one year study. From November to February and June to October, the detectable target strength was set at 100 mm (4 inches) or greater. From February to mid June, the target strength minimum detection limit was set at 150 mm (6 inches) or greater. The percentage of fish in the net collections below the hydroacoustic detection limit was used to adjust the hydroacoustic estimates.

Individual specimen length was provided but not summarized. A conceptual cost estimate for one inch trash racks is also provided.

Principal Study Conclusions: The daytime entrainment rate (6.88 fish/ hour) was significantly lower than the nighttime rate (11.41 fish/ hour). Daytime abundance of threadfin shad was nearly four times higher than at night. Highest threadfin shad entrainment (January and February) may have been due to low water temperature (7-10 C). This is the critical temperature range at which winter kills may occur. Simultaneous net and hydroacoustic estimates had high statistical correlation.

Hydroacoustics estimated that the population of forage fish (less than 15 mm in length) in Lake Greenwood was comprised of approximately 153.6 million individuals.

Project Name: Dam #4 FERC #: 2516: Potomac River, WV (1.1MW,1986; 2.1, 1992)

Explanatory Comments: The entrainment rates were not provided in the summary report; only the number collected by species and sampling effort. Sampling for 1870.2 hours in 1986 resulted in the collection of 1065 fish. The species specific monthly and total entrainment rates for 1986 were calculated by S&W assuming an average collection efficiency of 74% as presented by the licensee. The licensee provided 1992 with the monthly and total entrainment rates calculated by the same method used by Stone & Webster. The mouth of the collection net was 22 ft by 14 ft and 52 ft long with a mesh of 0.5 inches. Net efficiency was established by through-turbine releases of dead channel catfish, bluegill, and largemouth bass at half and full power settings.

Principal Study Conclusions:

Agency/Applicant Comments: The State of West Virginia Department of Natural Resources was satisfied with the entrainment study performed at Dam #4 (letter to F. Winchell from J. Rawson, WVDNR, dated 2/19/93).

Project Name: Hawks Nest FERC #: 2512: New River, WV (102 MW)

Explanatory Comments: Net samples were collected on 32 days and hydroacoustics sampled on 332 days (each sample lasted at least 24 hours). Entrainment was extrapolated by taking fish/volume sampled and applying to the estimated volume passing through the project. Species composition information derived from netting data was applied to hydroacoustically derived counts. The minimum hydroacoustic target was 3 inch fish. The partial flow nets were frame mounted fyke nets with 0.75 inch mesh nets. The operating discharge port to be sampled was chosen at random.

Conceptual screen costs are provided.

<u>Principal Study Conclusions</u>: The hydroacoustic estimates of entrainment were considered the most accurate. Hydroacoustics may have overestimated entrainment during October and November due to leaf litter and debris. An estimated 21119 sportfish were entrained. Most (52%) were juvenile catfish 4 inches or less in length. Bluegills 8 inches or smaller comprised 23.6% of the sportfish catch and hybrid striped bass 8-12 inches long comprised 14.6% of the sportfish catch. During every month but December, 70-95% of all entrained fish were in the upper third of the water column.

Agency/Applicant Comments: The West Virginia DNR was troubled with the difficulty in distinguishing between trash, debris and fish in the hydroacoustically derived entrainment estimates (letter to F. Winchell from J. Rawson, WVDNR, dated 2/19/93).

The U.S. FWS, West Virginia Field Office, indicated that data provided and methods used appeared to be satisfactory. U.S. FWS believed intake screening may not be a cost-effective mitigative measure (letter to A. Sims from C. Kulp, U.S. FWS, dated 11/29/90).

Project Name: Greenup L&D (Vanceburg) FERC #: 2614: Ohio River, OH/KT (69 MW)

Explanatory Comments: The Unit 1 turbine gallery net mouth was 9 ft by 6.7 ft and 13 ft long with 5/8 inch square mesh. There were 20.5 hours sampled by net during the spring, 26.25 during the summer and 14.17 hours during the fall. Spring forebay hydroacoustic hours sampled were 73; summer- 70.5; and fall-53. Day/night data is available. Bypass options for fish are spillage and lockage. The distribution of fish in the impoundment was investigated with hydroacoustics and several other fish sampling methods. No population estimates are provided. (Annual entrainment rates were not calculated due to large portion of the year not sampled. S&W).

The minimum detectable hydroacoustic target strength was -61 dB. The estimated length of this decibel value was not provided.

Principal Study Conclusions: Fish abundance in the impoundment as measured by hydroacoustics doubled from spring to summer and again from summer to fall. This reflects recruitment of gizzard shad. For all three seasons, more fish were entrained at Unit 1 than units 2 and 3, probably because fish were following the Ohio shoreline. Gamefish that were entrained include channel catfish, sauger, white bass and sunfish. These accounted for only 0.3 % of the net catch. Most of these were small channel catfish. "Entrainment" was also measured at Gate 9 to indicate fish passage by spillage. The autumn rates were higher than that at the plant. The species composition of entrained fish was quite different than that in the study area. The relative abundance of fish in the impoundment as determined by electroshocking (N=2117 fish) was as follows:

Gizzard shad:	58%
Bluegill:	10%
Emerald shiner:	6%
Freshwater drum:	3%
Largemouth bass:	3%
Common carp:	3%
Sauger:	3%
River carpsucker:	3%

Project Name: Beaver Falls (Townsend Dam) FERC #: 3451: Beaver River, PA (5 MW)

Explanatory Comments: Nets were sampled for nineteen, 24-hour samples, resulting in the collection of 853 fish. Unit 2 was sampled with a net that was 18 ft by 18 ft at the mouth and 55 ft long with one inch stretch mesh in the first 10 ft of the net and 0.75 inch stretch mesh netting in the remainder of the net. Unit 1 was inoperative during much of the study period, which extended from January 1992 to August 1992. The entire station did not operate from October to December, 1991, due to low river flows. Extrapolation to unsampled time periods was as follows; April was assumed to the mean percent composition and entrainment rate of March and May. July data was bolstered by including August 3 data with the limited data collected during July. September to December entrainment used the pooled data collected during the 19 sampling efforts. (Hourly rates presented in fields H14 to H17 reflect this assumption and were calculated by S & W). Entrainment was projected by using the fish/volume of water sampled vs the total flow through the project. Netting efficiency was evaluated by releasing 551 4-6 inch dead bluegills and green sunfish through the turbines.

<u>Principal Study Conclusions</u>: The entrainment estimates presented are for Unit 2 only. Applicant indicates that it is not valid to assume the same density at Unit 1 because the entrainment rate significantly decreased when both units were operated, compared to when only one unit was operated. The density of fish entrained during two unit operation was approximately 88% less than one unit operation based on a limited study to address this issue. Entrainment was episodic and not uniformly density dependent. There was no significant relationship observed between entrainment rate and river discharge, plant discharge, temperature or day vs night.

The tailrace fishery was considered to be the most significant fishery on the Beaver River. Above the hydroelectric plant, there is little fishing pressure. Sport fish sought include sauger, "saugeye", channel catfish and tiger muskies.

Project Name: Youghiogheny FERC #: 3623: Youghiogheny River, PA (12.2 MW)

Explanatory Comments: Raw catch/hour data was presented; monthly data with net efficiency adjustment were not presented; applicant may be able to provide summarized data. There was no flow through the turbines from November 11 to December 18, 1991. When no flow is passing through the hydroelectric plant, fish are still entrained through the discharge tunnel because the turbine penstocks tap into discharge tunnel. The discharge tunnel flow is under the control of the U.S. Army Corps of Engineers.

The net mouth was 7 ft by 19.75 ft, and 70 ft long with 0.75 inch square mesh netting. The last 25 ft was lined with 0.25 inch mesh. Net efficiency was determined by releasing rainbow trout and golden shiners into the mouth of the net.

Principal Study Conclusions: Most (73.3%) of the fish were collected at Unit 1. This unit operated during a one week period (January 5-12, 1992) when an estimated 45.3 % of the total alewife entrainment occurred. Other differences between units were considered to be random. Most fish (six times more) were collected at night. Most fish were entrained from October to March. Few specimens, except yellow perch were collected from April to July.

Most alewife were 41-61 mm TL (young-of-year). The highest catch corresponds to the lowest temperature and the highest discharge. The intake is a deepwater intake. It is believed that approach velocities exceeded the maximum swimming speed of alewife (which is reduced during cold whether) to account for episodic high entrainment rates. Entrained walleye ranged from 221-531 mm TL (age 3 dominated). Most (60 %) were entrained between December and March. The catch of walleye per hour never exceeded 0.6/hour and was usually less than 0.1/hour. Higher walleye entrainment occurred when there was high alewife entrainment and when there were low temperatures, high discharge and night conditions. Most crappies were entrained from late October to early March. Entrainment was limited to periods of low water temperature and perhaps related to general downstream movement by this species. Yellow perch entrainment was variable throughout the year.

Project Name: Station 26 FERC #: 2584: Genesee River, NY (3 MW)

Explanatory Comments: Relative abundance of entrained fish was based on the collection of 341 fish. Partial flow turbine gallery nets sampled intake bays 2 and 8 in front of the trash racks (no approach velocity information was included in the report. S & W). The netting consisted of trammel nets with a mouth that was 18.7 ft by 12.5 ft and 4 ft deep. The outer walls were 14 inches and the inner wall 1 inch stretch monofilament. The trammel nets were sampled on 25 days from November 1989 to October 1990.

The minimum detectable hydroacoustic target strength was estimated to be -53 dB. An estimate of the size that this decibel value equates to was not provided.

Over the course of the study, flow averaged 1055 cfs at the turbine intake, 1594 at the spillway and 53 cfs at the "race" (see below).

Principal Study Conclusions: Daily entrainment rates ranged from 0 to 1014 fish/hr. Generally, 1-30 fish per hour were entrained, with peaks occurring in August, September and October. There was a shift in passage from the upstream end of the intake structure (which is oriented parallel to the flow of the water) in June to the downstream in September. Overall, the lowest entrainment rates occurred in the middle intakes. Diel passage trends were variable, possibly due to variations in river flow and plant operations. There was no vertical stratification of entrained fish indicated by the hydroacoustic data. The highest mean fish passage over the entire sampling period was at the spillway, followed by the Johnson-Seymour Race and the turbine intake which each had comparable mean rates. Passage rates were dependent on which conduits were open and when they were open. The "race" is a canal on the opposite side of the river from the power plant, which provides flow for a waterfall and air conditioning for the City library. From May to November, there is approximately 75 cfs flowing in the race. During the rest of the year it is closed. (Contrast this to the 1594 cfs that passed through the turbine during the study period.). The higher downstream passage rates in the fall were attributed to young-of-the-year gizzard shad. Smaller fish, such as shiners, dominated the collections in May.

Agency/Applicant Comments: The USFWS commented that although the amount of netting conducted was not rigorous, the species composition and abundance as sampled probably represented a cross-section of the river's fishery in proportion with their relative abundances (letter to F. Winchell from D. Bryson, USFWS Cortland NY office, dated 5/7/93).

	· .	

APPENDIX 4

DETAILED STATISTICAL RESULTS AND PLOTS OF EXPLORATORY REGRESSION ANALYSES

s.			

APPENDIX 4

ORDER OF CONTENTS

Reservoir Size

Fish/hr by Reservoir Size - All Data
Fish/hr by Reservoir Size - w/o Buzzards Roost
Fish/hr by Reservoir Size - w/o Buzzards Roost and Youghiogheny
Fish/hr by Reservoir Size - w/o Clupeid Sites
Fish/hr by Reservoir Size - w/o Clupeids, Full-flow data only
Fish/hr by Reservoir Size - Au Sable River Sites
Fish/hr by Reservoir Size - Au Sable River Sites w/o Five Channels
Fish/hr by Reservoir Size - Flambeau River Sites
Fish/hr by Reservoir Size - Broad River Sites
Fish/hr by Reservoir Size - Broad River Sites
Fish/hr/kcfs by Reservoir Size - All Data
Fish/hr/kcfs by Reservoir Size - w/o Buzzards Roost
Fish/hr/kcfs by Reservoir Size - w/o Clupeid Sites
Fish/hr/kcfs by Reservoir Size - w/o Clupeid Sites
Fish/hr/kcfs by Reservoir Size - w/o Clupeids, Full-flow data only

Fish/hr/kcfs by Reservoir Size - Au Sable River Sites

Fish/hr/kcfs by Reservoir Size - Au Sable River Sites w/o Five Channels

Fish/hr/kcfs by Reservoir Size - Flambeau River Sites Fish/hr/kcfs by Reservoir Size - Broad River Sites

Fish/hr/kcfs by Reservoir Size - Broad River Sites w/o Buzzards Roost

Reservoir Length

Fish/hr by Reservoir Length - All Data Fish/hr by Reservoir Length - w/o Clupeid Sites

Fish/hr by Reservoir Length - w/o Clupeids, Full-flow data only

Fish/hr by Reservoir Length - Au Sable River Sites Fish/hr by Reservoir Length - Flambeau River Sites Fish/hr by Reservoir Length - Broad River Sites

Fish/hr/kcfs by Reservoir Length - All Data

Fish/hr/kcfs by Reservoir Length - w/o Clupeid Sites

Fish/hr/kcfs by Reservoir Length - w/o Clupeids, Full-flow data only

Fish/hr/kcfs by Reservoir Length - Au Sable River Sites Fish/hr/kcfs by Reservoir Length - Flambeau River Sites

Fish/hr/kcfs by Reservoir Length - Broad River Sites

Total Reservoir Storage

Fish/hr by Total Storage - All Data Fish/hr by Total Storage - All Data w/o Buzzards Roost Fish/hr by Total Storage - All Data w/o Buzzards Roost and Youghiogheny Fish/hr by Total Storage - w/o Clupeid Sites Fish/hr by Total Storage - w/o Clupeids, Full-flow data only Fish/hr by Total Storage - Au Sable River Sites Fish/hr by Total Storage - Au Sable River Sites w/o Five Channels Fish/hr by Total Storage - Flambeau River Sites Fish/hr by Total Storage - Broad River Sites Fish/hr by Total Storage - Broad River Sites w/o Buzzards Roost Fish/hr/kcfs by Total Storage - All Data Fish/hr/kcfs by Total Storage - All Data w/o Buzzards Roost Fish/hr/kcfs by Total Storage - All Data w/o Buzzards Roost and Youghiogheny Fish/hr/kcfs by Total Storage - w/o Clupeid Sites Fish/hr/kcfs by Total Storage - w/o Clupeids, Full-flow data only Fish/hr/kcfs by Total Storage - Au Sable River Sites Fish/hr/kcfs by Total Storage - Au Sable River Sites w/o Five Channels Fish/hr/kcfs by Total Storage - Flambeau River Sites Fish/hr/kcfs by Total Storage - Broad River Sites Fish/hr/kcfs by Total Storage - Broad River Sites w/o Buzzards Roost **Hydraulic Capacity** Fish/hr by Hydraulic Capacity - All Data Fish/hr by Hydraulic Capacity - All Data w/o Buzzards Roost and Hawks Nest Fish/hr by Hydraulic Capacity - w/o Clupeid Sites Fish/hr by Hydraulic Capacity - w/o Clupeids, Full-flow data only Fish/hr by Hydraulic Capacity - w/o Clupeids, Full-flow data only w/o Wisconsin River Division Fish/hr by Hydraulic Capacity - Au Sable River Sites Fish/hr by Hydraulic Capacity - Flambeau River Sites Fish/hr by Hydraulic Capacity - Broad River Sites Fish/hr by Hydraulic Capacity - Broad River Sites w/o Buzzards Roost Fish/hr/kcfs by Hydraulic Capacity - All Data Fish/hr/kcfs by Hydraulic Capacity - All Data w/o Buzzards Roost and Hawks Nest Fish/hr/kcfs by Hydraulic Capacity - w/o Clupeid Sites Fish/hr/kcfs by Hydraulic Capacity - w/o Clupeids, Full-flow data only Fish/hr/kcfs by Hydraulic Capacity - w/o Clupeids, Full-flow data only w/o Prickett

Fish/hr/kcfs by Hydraulic Capacity - Au Sable River Sites Fish/hr/kcfs by Hydraulic Capacity - Flambeau River Sites Fish/hr/kcfs by Hydraulic Capacity - Broad River Sites

Fish/hr/kcfs by Hydraulic Capacity - Broad River Sites w/o Buzzards Roost

Reservoir Through-Plant Flush Rate

```
Fish/hr by Flush Rate - All Data
Fish/hr by Flush Rate - All Data w/o Buzzards Roost
Fish/hr by Flush Rate - All Data w/o Buzzards Roost, Abbeville and Youghiogheny
Fish/hr by Flush Rate - w/o Clupeid Sites
Fish/hr by Flush Rate - w/o Clupeids, Full-flow data only
Fish/hr by Flush Rate - Au Sable River Sites
Fish/hr by Flush Rate - Au Sable River Sites w/o Five Channels
Fish/hr by Flush Rate - Flambeau River Sites
Fish/hr by Flush Rate - Broad River Sites
Fish/hr by Flush Rate - Broad River Sites w/o Buzzards Roost
Fish/hr/kcfs by Flush Rate - All Data
Fish/hr/kcfs by Flush Rate - All Data w/o Buzzards Roost
Fish/hr/kcfs by Flush Rate - All Data w/o Buzzards Roost and Youghiogheny
Fish/hr/kcfs by Flush Rate - w/o Clupeid Sites
Fish/hr/kcfs by Flush Rate - w/o Clupeid Sites w/o Abbeville
Fish/hr/kcfs by Flush Rate - w/o Clupeids, Full-flow data only
Fish/hr/kcfs by Flush Rate - w/o Clupeids, Full-flow data only w/o Prickett
Fish/hr/kcfs by Flush Rate - Au Sable River Sites
Fish/hr/kcfs by Flush Rate - Au Sable River Sites w/o Five Channels
Fish/hr/kcfs by Flush Rate - Flambeau River Sites
Fish/hr/kcfs by Flush Rate - Broad River Sites
Fish/hr/kcfs by Flush Rate - Broad River Sites w/o Buzzards Roost
Depth to Top of Intake
Fish/hr by Intake Depth - All Data
Fish/hr by Intake Depth - All Data w/o Buzzards Roost
Fish/hr by Intake Depth - All Data w/o Buzzards Roost and Youghiogheny
Fish/hr by Intake Depth - w/o Clupeid Sites
Fish/hr by Intake Depth - w/o Clupeids, Full-flow data only
Fish/hr by Intake Depth - Au Sable River Sites
Fish/hr by Intake Depth - Flambeau River Sites
Fish/hr by Intake Depth - Broad River Sites
Fish/hr by Intake Depth - Broad River Sites w/o Buzzards Roost
Fish/hr/kcfs by Intake Depth - All Data
Fish/hr/kcfs by Intake Depth - All Data w/o Buzzards Roost
Fish/hr/kcfs by Intake Depth - All Data w/o Buzzards Roost and Youghiogheny
Fish/hr/kcfs by Intake Depth - w/o Clupeid Sites
Fish/hr/kcfs by Intake Depth - w/o Clupeids, Full-flow data only
Fish/hr/kcfs by Intake Depth - Au Sable River Sites
Fish/hr/kcfs by Intake Depth - Flambeau River Sites
Fish/hr/kcfs by Intake Depth - Broad River Sites
```

Fish/hr/kcfs by Intake Depth - Broad River Sites w/o Buzzards Roost

Trash Rack Spacing

```
Fish/hr by Trash Rack Spacing - All Data w/o Youghiogheny
Fish/hr by Trash Rack Spacing - w/o Clupeid Sites
Fish/hr by Trash Rack Spacing - w/o Clupeids, Full-flow data only
Fish/hr by Trash Rack Spacing - w/o Clupeids, Full-flow data only w/o Centralia
Fish/hr by Trash Rack Spacing - Au Sable River Sites
Fish/hr by Trash Rack Spacing - Flambeau River Sites
Fish/hr by Trash Rack Spacing - Flambeau River Sites
Fish/hr/kcfs by Trash Rack Spacing - All Data
Fish/hr/kcfs by Trash Rack Spacing - All Data w/o Youghiogheny
```

Fish/hr/kcfs by Trash Rack Spacing - All Data w/o Youghiogheny
Fish/hr/kcfs by Trash Rack Spacing - w/o Clupeid Sites
Fish/hr/kcfs by Trash Rack Spacing - w/o Clupeids, Full-flow data only
Fish/hr/kcfs by Trash Rack Spacing - Au Sable River Sites
Fish/hr/kcfs by Trash Rack Spacing - Flambeau River Sites

Average Velocity at Trash Racks

Fish/hr by Intake Velocity - All Data
Fish/hr by Intake Velocity - w/o Clupeid Sites
Fish/hr by Intake Velocity - w/o Clupeids, Full-flow data only
Fish/hr by Intake Velocity - Au Sable River Sites
Fish/hr by Intake Velocity - Flambeau River Sites
Fish/hr by Intake Velocity - Broad River Sites

Fish/hr/kcfs by Intake Velocity - All Data
Fish/hr/kcfs by Intake Velocity - w/o Clupeid Sites
Fish/hr/kcfs by Intake Velocity - w/o Clupeids, Full-flow data only
Fish/hr/kcfs by Intake Velocity - Au Sable River Sites
Fish/hr/kcfs by Intake Velocity - Flambeau River Sites
Fish/hr/kcfs by Intake Velocity - Broad River Sites

<u>Usable Storage</u>

Fish/hr by Usable Storage - All Data

Fish/hr by Usable Storage - All Data w/o Buzzards Roost

Fish/hr by Usable Storage - w/o Clupeid Sites

Fish/hr by Usable Storage - w/o Clupeids, Full-flow data only

Average River Flow

Fish/hr by River Flow - All Data

Fish/hr by River Flow - All Data w/o Buzzards Roost

Fish/hr by River Flow - All Data w/o Buzzards Roost and Dam #4

Fish/hr by River Flow - All Data w/o Clupeid Sites

Fish/hr by River Flow - All Data w/o Buzzards Roost, Dam #4, Wisconsin River Division and Centralia

Fish/hr by River Flow - All Data w/o Buzzards Roost, Dam #4, Wisconsin River Division, Centralia, and Five Channels

4			

Fish/hr by Reservoir Size - All Data

Linear Fit

Summary of Fit

Rsquare 0.841343
Root Mean Square Error 156.446
Mean of Response 85.07098
Observations (or Sum Wgts) 41

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	5061831.2	5061831	206.8133
Error	39	954539.2	24475	Prob>F
C Total	40	6016370.3		0.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-100.5707	27.6333	-3.64	0.0008
Reservoir Size (in acres)	0.192872	0.01341	14.38	0.0000

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.983476
Root Mean Square Error 51.14814
Mean of Response 85.07098
Observations (or Sum Wgts) 41

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	5916957.3	2958479	1130.86
Error	38	99413.0	2616	Prob>F
C Total	40	6016370.3		0.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	34.578112	11.726	2.95	0.0054
Reservoir Size (in acres)	-0.049735	0.01412	-3.52	0.0011
Reservoir Size (in acres)^2	0.0000232	0	18.08	0.0000

05749A.B02 A4-2

Fish/hr by Reservoir Size - w/o Buzzards Roost

Summary of Fit

Rsquare 0.123738
Root Mean Square Error 42.20424
Mean of Response 24.89275
Observations (or Sum Wgts) 40

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	9557.926	9557.93	5.3660
Error	38	67685.526	1781.20	Prob>F
C Total	39	77243.452		0.0260

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	10.986954	8.97587	1.22	0.2285
Reservoir Size (in acres)	0.0198237	0.00856	2.32	0.0260

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.146241
Root Mean Square Error 42.218
Mean of Response 24.89275
Observations (or Sum Wgts) 40

Analysis of Variance

Source	DF.	Sum of Squares	Mean Square	F Ratio
Model	2	11296.154	5648.08	3.1689
Error	37	65947.298	1782.36	Prob>F
C Total	39	77243.452		0.0537

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	2.9421	12.1236	0.24	0.8096
Reservoir Size (in acres)	0.0421787	0.0242	1.74	0.0897
Reservoir Size (in acres)^2	-0.000007	0	-0.99	0.3298

Fish/hr by Reservoir Size w/o Buzzards Roost and Youghiogheny

Summary of Fit

Rsquare 0.00622
Root Mean Square Error 33.26164
Mean of Response 20.08538
Observations (or Sum Wgts) 39

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	256.211	256.21	0.2316
Error	37	40934.452	1106.34	Prob>F
C Total	38	41190.663		0.6332

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	17.749304	7.20642	2.46	0.0186
Reservoir Size (in acres)	0.0036126	0.00751	0.48	0.6332

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.053453
Root Mean Square Error 32.90934
Mean of Response 20.08538
Observations (or Sum Wgts) 39

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	2201.785	1100.89	1.0165
Error	36	38988.879	1083.02	Prob>F
C Total	38	41190.663		0.3720

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	9.2641162	9.53503	0.97	0.3377
Reservoir Size (in acres)	0.0272015	0.0191	1.42	0.1631
Reservoir Size (in acres)^2	-0.000007	Ô	-1.34	0.1885

Fish/hr by Reservoir Size w/o Clupeid Sites

Summary of Fit

Rsquare 0.006192
Root Mean Square Error 34.08022
Mean of Response 20.24946
Observations (or Sum Wgts) 37

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	253.289	253.29	0.2181
Error	35	40651.147	1161.46	Prob>F
C Total	36 .	40904.435		0.6434

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	17.802296	7.67149	2.32	0.0263
Reservoir Size (in acres)	0.0036384	0.00779	0.47	0.6434

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.056423
Root Mean Square Error 33.69258
Mean of Response 20.24946
Observations (or Sum Wgts) 37

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	2307.970	1153.98	1.0166
Error	34	38596.465	1135.19	Prob>F
C Total	36	40904.435		0.3726

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	8.4978778	10.2641	0.83	0.4135
Reservoir Size (in acres)	0.0285099	0.02003	1.42	0.1637
Reservoir Size (in acres)^2	-0.000008	0	-1.35	0.1874

Fish/hr by Reservoir Size w/o Clupeids, Full-flow data only

Summary of Fit

Rsquare 0.002599
Root Mean Square Error 28.70989
Mean of Response 18.96937
Observations (or Sum Wgts) 16

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	30.064	30.064	0.0365
Error	14	11539.610	824.258	Prob>F
C Total	15	11569.674		0.8513

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	20.698075	11.552	1.79	0.0948
Reservoir Size (in acres)	-0.0039	0.02042	-0.19	0.8513

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.023683
Root Mean Square Error 29.47706
Mean of Response 18.96937
Observations (or Sum Wgts) 16

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	274.009	137.005	0.1577
Error	13	11295.665	868.897	Prob>F
C Total	15	11569.674		0.8557

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	29.299882	20.1052	1.46	0.1688
Reservoir Size (in acres)	-0.038736	0.06901	-0.56	0.5841
Reservoir Size (in acres)^2	0.0000214	0.00004	0.53	0.6051

Fish/hr by Reservoir Size Au Sable River Sites

Summary of Fit

Rsquare 0.22458
Root Mean Square Error 13.65279
Mean of Response 22.39167
Observations (or Sum Wgts) 6

Analysis of Variance

Source	DF	Sum of Squares	Mean	Square	F Ratio
Model	1	215.94140		215.941	1.1585
Error	4	745.59509		186.399	Prob>F
C Total	5	961.53648			0.3424

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	34.209535	12.3135	2.78	0.0499
Reservoir Size (in acres)	-0.010784	0.01002	-1.08	0.3424

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.965875
Root Mean Square Error 3.30719
Mean of Response 22.39167
Observations (or Sum Wgts) 6

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	928.72396	464.362	42.4559
Error	3	32.81253	10.938	Prob>F
C Total	5	961.53648		0.0063

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
intercept	71.333504	5.48132	13.01	0.0010
Reservoir Size (in acres)	-0.10017	0.01134	-8.84	0.0031
Reservoir Size (in acres)^2	0.0000403	0	8.07	0.0040

Fish/hr by Reservoir Size Au Sable River Sites w/o Five Channels

Summary of Fit

Rsquare 0.349402
Root Mean Square Error 5.290994
Mean of Response 17.124
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum	of Squares	Mean	Square	F Ratio
Model	1		45.10327		45.1033	1.6111
Error	3		83.98385		27.9946	Prob>F
C Total	4		129.08712			0.2939

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	8.6207339	7.10474	1.21	0.3118
Reservoir Size (in acres)	0.0067219	0.0053	1.27	0.2939

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.747485
Root Mean Square Error 4.037107
Mean of Response 17.124
Observations (or Sum Wgts) 5

Analysis of Variance

Source Model	DF 2	Sum of Squar 96,490	Square 48.2453	F Ratio 2.9602
Error C Total	2 4	32.596 129.087	 16.2982	Prob>F 0.2525

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	75.656731	38.1401	1.98	0.1857
Reservoir Size (in acres)	-0.107412	0.0644	-1.67	0.2373
Reservoir Size (in acres)^2	0.000043	0.00002	1.78	0.2178

Fish/hr by Reservoir Size Flambeau River Sites

Summary of Fit

Rsquare 0.362426
Root Mean Square Error 2.230421
Mean of Response 7.68
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	8.483669	8.48367	1.7053
Error	. 3	14.924331	4.97478	Prob>F
C Total	4	23.408000		0.2827

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	10.356978	2.27973	4.54	0.0200
Reservoir Size (in acres)	-0.009479	0.00726	-1.31	0.2827

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.789935
Root Mean Square Error 1.567993
Mean of Response 7.68
Observations (or Sum Wgts) 5

Analysis of Variance

Source Model	DF 2	Sum of Squares 18,490793	Mean Square 9,24540	F Ratio 3,7604
Error	2	4.917207	2.45860	Prob>F
C Total	4	23.408000		0.2101

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	15.294742	2.92553	5.23	0.0347
Reservoir Size (in acres)	-0.062574	0.02681	-2.33	0.1447
Reservoir Size (in acres)^2	0.000102	0.00005	2.02	0.1811

Fish/hr by Reservoir Size Broad River Sites

Summary of Fit

Rsquare 0.999518
Root Mean Square Error 28.08383
Mean of Response 509.962
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	4909287.8	4909288	6224.519
Error	3	2366.1	789	Prob>F
C Total	4	4911653.9		0.0000

Parameter Estimates

 Term
 Estimate
 Std Error
 t Ratio
 Prob>|t|

 Intercept
 -84.49763
 14.6463
 -5.77
 0.0104

 Reservoir Size (in acres)
 0.2258757
 0.00286
 78.90
 0.00000

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.999995
Root Mean Square Error 3.522926
Mean of Response 509.962
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	4911629.1	2455815	197873.9
Error	2	24.8	12	Prob>F
C Total	4	4911653.9		0.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	34.878227	8.88353	3.93	0.0592
Reservoir Size (in acres)	-0.057637	0.02064	-2.79	0.1079
Reservoir Size (in acres)^2	0.0000239	0	13.73	0.0053

Fish/hr by Reservoir Size Broad River Sites w/o Buzzards Roost

Summary of Fit

Rsquare 0.683961
Root Mean Square Error 3.31487
Mean of Response 14.4025
Observations (or Sum Wgts) 4

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	47.561343	47.5613	4.3283
Error	2	21.976732	10.9884	Prob>F
C Total	3	69.538075		0.1730

Parameter Estimates

 Term
 Estimate
 Std Error
 t Ratio
 Prob>|t|

 Intercept
 30.866984
 8.08555
 3.82
 0.0623

 Reservoir Size (in acres)
 -0.037526
 0.01804
 -2.08
 0.1730

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.872687
Root Mean Square Error 2.975412
Mean of Response 14.4025
Observations (or Sum Wgts) 4

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	60.685000	30.3425	3.4273
Error	1	8.853075	8.8531	Prob>F
C Total	3	69.538075		0.3568

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-8.768652	33.3533	-0.26	0.8363
Reservoir Size (in acres)	0.1592442	0.16242	0.98	0.5063
Reservoir Size (in acres)^2	-0.000232	0.00019	-1.22	0.4377

Fish/hr/kcfs by Reservoir Size All Data

Summary of Fit

Rsquare 0.77985
Root Mean Square Error 48.74145
Mean of Response 32.56477
Observations (or Sum Wgts) 41

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	328211.50	328211	138.1519
Error	39	92653.43	2376	Prob>F
C Total	40	420864.92		0.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-14.70664	8.60927	-1.71	0.0955
Reservoir Size (in acres)	0.0491125	0.00418	11.75	0.0000

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.853407
Root Mean Square Error 40.2936
Mean of Response 32.56477
Observations (or Sum Wgts) 41

Analysis of Variance

Source	DF	Sum of Squares	Mean	Square	F Ratio
Model	2.	359169.10		179585	110.6106
Error	38	61695.82		1624	Prob>F
C Total	40	420864.92			0.0000

Parameter Estimates

Term .	Estimate	Std Error	t Ratio	Prob> t
Intercept	11.008025	9.23755	1.19	0.2408
Reservoir Size (in acres)	0.0029519	0.01112	0.27	0.7921
Reservoir Size (in acres)^2	0.0000044	0	4.37	0.0001

Fish/hr/kcfs by Reservoir Size w/o Buzzards Roost

Summary of Fit

Rsquare 0.085429
Root Mean Square Error 39.08584
Mean of Response 17.80264
Observations (or Sum Wgts) 40

Analysis of Variance

Source	DF	Sum of Squares	Mean	Square	F Ratio
Model	1	5422.601		5422.60	3.5495
Error	38	58052.695		1527.70	Prob>F
C Total	39	63475.296			0.0672

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	7.3285136	8.31266	0.88	0.3835
Reservoir Size (in acres)	0.0149316	0.00793	1.88	0.0672

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.129358
Root Mean Square Error 38.64749
Mean of Response 17.80264
Observations (or Sum Wgts) 40

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2.	8211.037	4105.52	2.7487
Error	37	55264.258	1493.63	Prob>F
C Total	39	63475.296		0.0771

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-2.860804	11.0983	-0.26	0.7980
Reservoir Size (in acres)	0.0432456	0.02215	1.95	0.0585
Reservoir Size (in acres)^2	-0.000009	0	-1.37	0.1801

Fish/hr/kcfs by Reservoir Size w/o Clupeid Sites

Summary of Fit

Rsquare 0.011707 Root Mean Square Error 37.46773 Mean of Response 15.2143 Observations (or Sum Wgts) 37

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	582.003	582.00	0.4146
Error	35	49134.074	1403.83	Prob>F
C Total	36	49716.077		0.5239

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	11.504783	8.43402	1.36	0.1812
Reservoir Size (in acres)	0.0055152	0.00857	0.64	0.5239

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.071781
Root Mean Square Error 36.84123
Mean of Response 15.2143
Observations (or Sum Wgts) 37

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	3568.688	17 8 4.34	1.3147
Error	34	46147.389	1357.28	Prob>F
C Total	36	49716.077		0.2819

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	0.2868792	11.2233	0.03	0.9798
Reservoir Size (in acres)	0.0355016	0.0219	1.62	0.1142
Reservoir Size (in acres)^2	-0.000009	0	-1.48	0.1472

Fish/hr/kcfs by Reservoir Size w/o Clupeids, Full-flow data only

Summary of Fit

Rsquare 0.032053
Root Mean Square Error 11.01528
Mean of Response 8.502351
Observations (or Sum Wgts) 16

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	56.2509	56.251	0.4636
Error	14	1698.7081	121.336	Prob>F
C Total	15	1754.9590		0.5071

Parameter Estimates

 Term
 Estimate
 Std Error
 t Ratio
 Prob>|t|

 Intercept
 6.1377442
 4.4322
 1.38
 0.1878

 Reservoir Size (in acres)
 0.0053347
 0.00784
 0.68
 0.5071

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.088767
Root Mean Square Error 11.09115
Mean of Response 8.502351
Observations (or Sum Wgts) 16

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model		155,7821	77,891	0.6332
Error	13	1599.1769	123.014	Prob>F
C Total	15	1754.9590		0.5465

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	0.6433028	7.56487	0.09	0.9335
Reservoir Size (in acres)	0.0275866	0.02597	1.06	0.3074
Reservoir Size (in acres)^2	-0.000014	0.00002	-0.90	0.3847

Fish/hr/kcfs by Reservoir Size Au Sable River Sites

Summary of Fit

Rsquare 0.409005
Root Mean Square Error 4.035754
Mean of Response 7.181992
Observations (or Sum Wgts) 6

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	45.08729	45.0873	2.7682
Error	4	65.14925	16.2873	Prob>F
C Total	5	110.23654		0.1715

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	12.582048	3.63985	3.46	0.0259
Reservoir Size (in acres)	-0.004928	0.00296	-1.66	0.1715

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.956927
Root Mean Square Error 1.258073
Mean of Response 7.181992
Observations (or Sum Wgts) 6

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model		105,48829	52,7441	33.3244
Error	3	4.74824	1.5827	Prob>F
C Total	5	110.23654		0.0089

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	23.388869	2.08512	11.22	0.0015
Reservoir Size (in acres)	-0.030948	0.00431	-7.18	0.0056
Reservoir Size (in acres)^2	0.0000117	. 0	6.18	0.0085

Fish/hr/kcfs by Reservoir Size Au Sable River Sites w/o Five Channels

Summary of Fit

Rsquare 0.000195
Root Mean Square Error 1.975245
Mean of Response 5.369724
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	0.002279	0.00228	0.0006
Error	3	11.704776	3.90159	Prob>F
C Total	4	11.707056		0.9822

Parameter Estimates

 Term
 Estimate
 Std Error
 t Ratio
 Prob>|t|

 Intercept
 5.3092776
 2.65236
 2.00
 0.1391

 Reservoir Size (in acres)
 0.0000478
 0.00198
 0.02
 0.9822

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.654529
Root Mean Square Error 1.422049
Mean of Response 5.369724
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squar	es Mean	Square	F Ratio
Model	2	7.6626	10	3.83130	1.8946
Error	2	4.0444	46	2.02222	Prob>F
C Total	4	11.7070	56		0.3455

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	31.191621	13.4346	2.32	0.1460
Reservoir Size (in acres)	-0.044019	0.02269	-1.94	0.1919
Reservoir Size (in acres)^2	0.0000166	0	1.95	0.1910

Fish/hr/kcfs by Reservoir Size Flambeau River Sites

Summary of Fit

Rsquare 0.462892
Root Mean Square Error 2.678238
Mean of Response 8.001698
Observations (or Sum Wgts) 5

Analysis of Variance

Source Model	DF 1	Sum of Squares 18.545439	Mean Square 18.5454	F Ratio 2.5855
Error	3	21.518869	7.1730	Prob>F
C Total	4	40.064308	e e	0.2062

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	11.959659	2.73745	4.37	0.0222
Reservoir Size (in acres)	-0.014015	0.00872	-1.61	0.2062

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.816399
Root Mean Square Error 1.917792
Mean of Response 8.001698
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	32.708457	16.3542	4.4466
Error	2	7.355852	3.6779	Prob>F
C Total	4	40.064308		0.1836

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	17.833926	3.57817	4.98	0.0380
Reservoir Size (in acres)	-0.07718	0.03279	-2.35	0.1428
Reservoir Size (in acres)^2	0.0001213	0.00006	1.96	0.1887

Fish/hr/kcfs by Reservoir Size Broad River Sites

Summary of Fit

Rsquare 0.999762
Root Mean Square Error 4.90912
Mean of Response 130.4379
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	303281.39	303281	12584.57
Error	3	72.30	24	Prob>F
C Total	4	303353.69		0.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-17.31496	2.5602	-6.76	0.0066
Reservoir Size (in acres)	0.0561414	0.0005	112.18	0.0000

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.999957
Root Mean Square Error 2.553146
Mean of Response 130.4379
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	303340.65	151670	23267.47
Error	2	13.04	7	Prob>F
C Total	4	303353.69		0.0000

Parameter Estimates

Estimate	Std Error	t Ratio	Prob> t
1.6772239	6.4381	0.26	0.8188
0.0110358	0.01496	0.74	0.5376
0.0000038	0	3.02	0.0946
	1.6772239 0.0110358	1.6772239 6.4381 0.0110358 0.01496	1.6772239 6.4381 0.26 0.0110358 0.01496 0.74

Fish/hr/kcfs by Reservoir Size Broad River Sites w/o Buzzards Roost

Summary of Fit

Rsquare 0.343002
Root Mean Square Error 2.586919
Mean of Response 7.284912
Observations (or Sum Wgts) 4

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	6.987606	6.98761	1.0442
Error	2	13.384296	6.69215	Prob>F
C Total	3	20.371902		0.4143

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	0.9740997	6.30994	0.15	0.8915
Reservoir Size (in acres)	0.0143836	0.01408	1.02	0.4143

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.772067
Root Mean Square Error 2.154861
Mean of Response 7.284912
Observations (or Sum Wgts) 4

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	. 2	15.728478	7.86424	1.6936
Error	. 1	4.643424	4.64342	Prob>F
C Total	3	20.371902		0.4774

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	33.321231	24.1552	1.38	0.3993
Reservoir Size (in acres)	-0.146203	0.11763	-1.24	0.4313
Reservoir Size (in acres)^2	0.0001897	0.00014	1.37	0.4010

Fish/hr by Reservoir Length All Data

Summary of Fit

Rsquare 0.04687
Root Mean Square Error 20.6616
Mean of Response 17.06735
Observations (or Sum Wgts) 34

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	671.767	671.767	1.5736
Error	32	13660.860	426.902	Prob>F
C Total	33	14332.627		0.2188

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	23.202086	6.03926	3.84	0.0005
Reservoir Length (in miles)	-1.401753	1.11745	-1.25	0.2188

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.047717
Root Mean Square Error 20.98288
Mean of Response 17.06735
Observations (or Sum Wgts) 34

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	683.909	341.955	0.7767
Error	31	13648.718	440.281	Prob>F
C Total	33	14332.627		0.4687

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	24.290946	8.97803	2.71	0.0110
Reservoir Length (in miles)	-1.844294	2.89636	-0.64	0.5290
Reservoir Length (in miles)^2	0.029029	0.1748	0.17	0.8692

Fish/hr by Reservoir Length w/o Clupeid Sites

Summary of Fit

Rsquare 0.03569
Root Mean Square Error 21.38261
Mean of Response 16.50419
Observations (or Sum Wgts) 31

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model Error	1 29	490.733 13259.264	490.733 457.216	1.0733 Prob> F
C Total	30	13749.997		0.3088

Parameter Estimates

 Term
 Estimate
 Std Error
 t Ratio
 Prob>|t|

 Intercept
 22.05938
 6.59555
 3.34
 0.0023

 Reservoir Length (in miles)
 -1.224828
 1.18226
 -1.04
 0.3088

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.035695
Root Mean Square Error 21.76103
Mean of Response 16.50419
Observations (or Sum Wgts) 31

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	490.808	245.404	0.5182
Error	28	13259.189	473.542	Prob>F
C Total	30	13749.997		0.6012

Parameter Estimates

Estimate	Std Error	t Ratio	Prob> t
21.967226	9.91799	2.21	0.0351
-1.188396	3.12726	-0.38	0.7068
-0.002348	0.18605	-0.01	0.9900
	21.967226 -1.188396	21.967226 9.91799 -1.188396 3.12726	21.967226 9.91799 2.21 -1.188396 3.12726 -0.38

Fish/hr by Reservoir Length w/o Clupeids, Full-flow data only

Summary of Fit

Rsquare 0.026548
Root Mean Square Error 31.553
Mean of Response 20.84692
Observations (or Sum Wgts) 13

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	298.664	298.664	0.3000
Error	11	10951.510	995.592	Prob>F
C Total	12	11250.174		0.5948

Parameter Estimates

 Term
 Estimate
 Std Error
 t Ratio
 Prob>|t|

 Intercept
 30.119958
 19.0585
 1.58
 0.1423

 Reservoir Length (in miles)
 -3.013736
 5.50243
 -0.55
 0.5948

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.140976
Root Mean Square Error 31.08724
Mean of Response 20.84692
Observations (or Sum Wgts) 13

Analysis of Variance

Source	DF	Sum of Squares	Mean S	Square	F Ratio
Model	2	1586.008	7	93.004	0.8206
Error	10	9664.166	9	66.417	Prob>F
C Total	12	11250.174			0.4678

Parameter Estimates

ob> t
0.8848
0.3364
0.2753

Fish/hr by Reservoir Length Au Sable River Sites

Summary of Fit

Rsquare 0.136617
Root Mean Square Error 13.10494
Mean of Response 23.27857
Observations (or Sum Wgts) 7

Analysis of Variance

Source	DF	Sum of Squares	Mean	Square	F Ratio
Model	1	135.87582		135.876	0.7912
Error	5	858.69787		171.740	Prob>F
C Total	6	994.57369			0.4145

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	36.114445	15.2572	2.37	0.0642
Reservoir Length (in miles)	-2.76465	3.10817	-0.89	0.4145

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.636144
Root Mean Square Error 9.511593
Mean of Response 23.27857
Observations (or Sum Wgts) 7

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	632.69206	316.346	3.4967
Error	4	361.88163	90.470	Prob>F
C Total	6	994.57369		0.1324

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	119.74532	37.3665	3.20	0.0328
Reservoir Length (in miles)	-39.47841	15.8285	-2.49	0.0672
Reservoir Length (in miles)^2	3.6033744	1.53768	2.34	0.0791

Fish/hr by Reservoir Length Flambeau River Sites

Summary of Fit

Rsquare 0.632158
Root Mean Square Error 2.892609
Mean of Response 7.933333
Observations (or Sum Wgts) 3

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	14.379478	14.3795	1.7186
Error	1	8.367188	8.3672	Prob>F
C Total	2	22.746667		0.4149

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	11.962311	3.4978	3.42	0.1811
Reservoir Length (in miles)	-0.851192	0.6493	-1.31	0.4149

Fish/hr by Reservoir Length Broad River Sites

Fish/hr/kcfs by Reservoir Length All Data

Summary of Fit

Rsquare 0.071233
Root Mean Square Error 10.09667
Mean of Response 10.03695
Observations (or Sum Wgts) 34

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	250.1971	250.197	2.4543
Error	32	3262.1663	101.943	Prob>F
C Total	33	3512.3634		0.1270

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	13.780877	2.95119	4.67	0.0001
Reservoir Length (in miles)	-0.855467	0.54606	-1.57	0.1270

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.075665
Root Mean Square Error 10.23372
Mean of Response 10.03695
Observations (or Sum Wgts) 34

Analysis of Variance

				
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	265.7625	132.881	1.2688
Error	31	3246.6009	104.729	Prob>F
C Total	33	3512.3634		0.2954

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	15.013688	4.37875	3.43	0.0017
Reservoir Length (in miles)	-1.356513	1.4126	-0.96	0.3443
Reservoir Length (in miles)^2	0.0328668	0.08525	0.39	0.7025

Fish/hr/kcfs by Reservoir Length w/o Clupeid Sites

Summary of Fit

Rsquare 0.06402
Root Mean Square Error 10.40718
Mean of Response 9.971235
Observations (or Sum Wgts) 31

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	214.8376	214.838	1.9836
Error	29	3140.9713	108.309	Prob>F
C Total	30	3355.8089		0.1696

Parameter Estimates

 Term
 Estimate
 Std Error
 t Ratio
 Prob>|t|

 Intercept
 13.64686
 3.21013
 4.25
 0.0002

 Reservoir Length (in miles)
 -0.810415
 0.57542
 -1.41
 0.1696

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.066106
Root Mean Square Error 10.57958
Mean of Response 9.971235
Observations (or Sum Wgts) 31

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	221.8384	110.919	0.9910
Error	28	3133.9705	111.928	Prob>F
C Total	30	3355.8089		0.3839

Parameter Estimates

				l
Term	Estimate	Std Error	t Ratio	Prob>(t)
Intercept	14.534641	4.82184	3.01	0.0054
Reservoir Length (in miles)	-1.161386	1.52038	-0.76	0.4513
Reservoir Length (in miles)^2	0.0226215	0.09045	0.25	0.8043

Fish/hr/kcfs by Reservoir Length w/o Clupeids, Full-flow data only

Summary of Fit

Rsquare 0.00001
Root Mean Square Error 12.51231
Mean of Response 9.171986
Observations (or Sum Wgts) 13

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	0.0173	0.017	0.0001
Error	11	1722.1381	156.558	Prob>F
C Total	12	1722.1553		0.9918

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	9.1014884	7.55764	1.20	0.2538
Reservoir Length (in miles)	0.0229118	2.18198	0.01	0.9918

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.160033
Root Mean Square Error 12.02728
Mean of Response 9.171986
Observations (or Sum Wgts) 13

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	275.6011	137.801	0.9526
Error	10	1446.5543	144.655	Prob>F
C Total	12	1722.1553		0.4181

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-7.311135	13.9345	-0.52	0.6112
Reservoir Length (in miles)	13.352567	9.88252	1.35	0.2064
Reservoir Length (in miles)^2	-2.050667	1.48572	-1.38	0.1976

Fish/hr/kcfs by Reservoir Length Au Sable River Sites

Summary of Fit

Rsquare 0.336865
Root Mean Square Error 4.820627
Mean of Response 8.425835
Observations (or Sum Wgts) 7

Analysis of Variance

Source	ÐF	Sum of Squares	Mean	Square	F Ratio
Model	1	59.02437		59.0244	2.5399
Error	5	116.19221		23.2384	Prob>F
C Total	6	175.21658			0.1719

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	16.885828	5.61232	3.01	0.0298
Reservoir Length (in miles)	-1.822152	1.14333	-1.59	0.1719

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.74101
Root Mean Square Error 3.368209
Mean of Response 8.425835
Observations (or Sum Wgts) 7

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	129.83726	64.9186	5.7223
Error	4	45.37932	11.3448	Prob>F
C Total	6	175.21658		0.0671

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	48.459488	13.2321	3.66	0.0215
Reservoir Length (in miles)	-15.68292	5.60514	-2.80	0.0489
Reservoir Length (in miles)^2	1.3604032	0.54452	2.50	0.0669

Fish/hr/kcfs by Reservoir Length Flambeau River Sites

Summary of Fit

Rsquare 0.626586
Root Mean Square Error 2.059434
Mean of Response 9.957786
Observations (or Sum Wgts) 3

Analysis of Variance

Source	DF	Sum of	Squares	Mean	Square	F Ratio
Model	1		7.116828		7.11683	1.6780
Error	1		4.241269		4.24127	Prob>F
C Total	2	1	1.358097			0.4185

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	12.792221	2.49031	5.14	0.1224
Reservoir Length (in miles)	-0.598824	0.46228	-1.30	0.4185

Fish/hr/kcfs by Reservoir Length Broad River Sites

Fish/hr by Total Storage All Data

Summary of Fit

Rsquare 0.680559
Root Mean Square Error 230.7482
Mean of Response 84.35316
Observations (or Sum Wgts) 38

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	4083712.5	4083712	76.6970
Error	36	1916810.8	53245	Prob>F
C Total	37	6000523.3		0.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-54.1136	40.6345	-1.33	0.1913
Total Storage (in ac-ft)	0.006383	0.00073	8.76	0.0000

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.977954
Root Mean Square Error 61.47817
Mean of Response 84.35316
Observations (or Sum Wgts) 38

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	5868238.5	2934119	776.3114
Error	35	132284.8	3780	Prob>F
C Total	37	6000523.3		0.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	58.549445	12.0038	4.88	0.0000
Total Storage (in ac-ft)	-0.007428	0.00066	-11.18	0.0000
Total Storage (in ac-ft)^2	6e-8	0	21.73	0.0000

Fish/hr by Total Storage All Data w/o Buzzards Roost

Summary of Fit

Rsquare 0.389211
Root Mean Square Error 28.36411
Mean of Response 19.27622
Observations (or Sum Wgts) 37

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	17943.238	17943.2	2 22.3030
Error	35	28158.289	804.5	5 Prob>F
C Total	36	46101.527		0.0000

Parameter Estimates

 Term
 Estimate
 Std Error
 t Ratio
 Prob>|t|

 Intercept
 8.8300715
 5.16106
 1.71
 0.0960

 Total Storage (in ac-ft)
 0.0006972
 0.00015
 4.72
 0.0000

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.462196
Root Mean Square Error 27.00414
Mean of Response 19.27622
Observations (or Sum Wgts) 37

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	21307.924	10654.0	14.6100
Error	34	24793.604	729.2	Prob>F
C Total	36	46101.527		0.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	17.217459	6.27615	2.74	0.0096
Total Storage (in ac-ft)	-0.000626	0.00063	-0.99	0.3289
Total Storage (in ac-ft)^2	9.4e-9	0	2.15	0.0389

Fish/hr by Total Storage All Data w/o Buzzards Roost and Youghiogheny

Summary of Fit

Rsquare 0.005969
Root Mean Square Error 15.07845
Mean of Response 13.91222
Observations (or Sum Wgts) 36

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	46.4168	46.417	0.2042
Error	34	7730.2315	227.360	Prob>F
C Total	35	7776.6482		0.6543

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	14.477831	2.80759	5.16	0.0000
Total Storage (in ac-ft)	-0.00005	0.00011	-0.45	0.6543

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.025519
Root Mean Square Error 15.15395
Mean of Response 13.91222
Observations (or Sum Wgts) 36

Analysis of Variance

Source	DF	Sum of Squares	Mean	Square	F Ratio
Model	2	198.4548		99.227	0.4321
Error	33	7578.1934		229.642	Prob>F
C Total	35	7776.6482			0.6528

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	12.711276	3.56024	3.57	0.0011
Total Storage (in ac-ft)	0.0002352	0.00037	0.64	0.5274
Total Storage (in ac-ft)^2	-2.3e-9	0	-0.81	0.4217

Fish/hr by Total Storage w/o Clupeid Sites

Summary of Fit

Rsquare 0.004894
Root Mean Square Error 15.2606
Mean of Response 13.72765
Observations (or Sum Wgts) 34

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	36.6480	36.648	0.1574
Error	32	7452.3456	232.886	Prob>F
C Total	33	7488.9936		0.6942

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	14.249049	2.92868	4.87	0.0000
Total Storage (in ac-ft)	-0.000045	0.00011	-0.40	0.6942

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.030877 Root Mean Square Error 15.30102 Mean of Response 13.72765 Observations (or Sum Wgts) 34

Analysis of Variance

Source	D.F	Sum of Squares	Mean	Square	F Ratio
Model	2	231.2388		115.619	0.4938
Error	31	7257.7548		234.121	Prob>F
C Total	33	7488.9936			0.6150

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	12.199078	3.69848	3.30	0.0024
Total Storage (in ac-ft)	0.0002804	0.00037	0.75	0.4593
Total Storage (in ac-ft)^2	-2.6e-9	0	-0.91	0.3690

Fish/hr by Total Storage w/o Clupeids, Full-flow data only

Summary of Fit

Rsquare 0.001629
Root Mean Square Error 20.98645
Mean of Response 14.49429
Observations (or Sum Wgts) 14

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	8.6252	8.625	0.0196
Error	12	5285.1712	440.431	Prob>F
C Total	13	5293.7963		0.8910

Parameter Estimates

 Term
 Estimate
 Std Error
 t Ratio
 Prob>|t|

 Intercept
 15.343499
 8.26344
 1.86
 0.0880

 Total Storage (in ac-ft)
 -0.00017
 0.00121
 -0.14
 0.8910

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.026176
Root Mean Square Error 21.64848
Mean of Response 14.49429
Observations (or Sum Wgts) 14

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	138.5716	69.286	0.1478
Error	11	5155.2248	468.657	Prob>F
C Total	13	5293.7963		0.8643

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	19.53899	11.6681	1.67	0.1222
Total Storage (in ac-ft)	-0.002729	0.00502	-0.54	0.5975
Total Storage (in ac-ft)^2	0.0000002	0	0.53	0.6089

Fish/hr by Total Storage Au Sable River Sites

Summary of Fit

Rsquare 0.282908
Root Mean Square Error 13.12927
Mean of Response 22.39167
Observations (or Sum Wgts) 6

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	272.02598	272.026	1.5781
Error	4	689.51051	172.378	Prob>F
C Total	5	961.53648		0.2774

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	35.215839	11.5301	3.05	0.0379
Total Storage (in ac-ft)	-0.000677	0.00054	-1.26	0.2774

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.947861
Root Mean Square Error 4.087915
Mean of Response 22.39167
Observations (or Sum Wgts) 6

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	911.40334	455.702	27.2695
Error	3	50.13314	16.711	Prob>F
C Total	5	961.53648		0.0119

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
intercept	71.880649	6.92991	10.37	0.0019
Total Storage (in ac-ft)	-0.006494	0.00096	-6.80	0.0065
Total Storage (in ac-ft)^2	0.0000002	0	6.19	0.0085

Fish/hr by Total Storage Au Sable River Sites w/o Five Channels

05749C.B02

Summary of Fit

Rsquare 0.117914
Root Mean Square Error 6.160788
Mean of Response 17.124
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean	Square	F Ratio
Model	1	15.22119		15.2212	0.4010
Error	3	113.86593	•	37.9553	Prob>F
C Total	4	129.08712			0.5715

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	12.382626	7.97799	1.55	0.2184
Total Storage (in ac-ft)	0.0002163	0.00034	0.63	0.5715

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.620205
Root Mean Square Error 4.951091
Mean of Response 17.124
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of	Squares	Mean	Square	F Ratio
Model	2		80.06052		40.0303	1.6330
Error	2		49.02660		24.5133	Prob>F
C Total	4	1	29.08712			0.3798

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	65.091758	33.0372	1.97	0.1876
Total Storage (in ac-ft)	-0.005752	0.00368	-1.56	0.2585
Total Storage (in ac-ft)^2	0.000001	0	1.63	0.2454

Fish/hr by Total Storage Flambeau River Sites

Summary of Fit

Rsquare 0.251461
Root Mean Square Error 2.416734
Mean of Response 7.68
Observations (or Sum Wgts) 5

Analysis of Variance

Source Model Error C Total	DF 1 3	17.	quares i 886197 521803 408000	Square 5.88620 5.84060	F Ratio 1.0078 Prob>F 0.3894
Ciotal	4	23.4	408000		0.3894

Parameter Estimates

 Term
 Estimate
 Std Error
 t Ratio
 Prob>|t|

 Intercept
 9.5267627
 2.1336
 4.47
 0.0209

 Total Storage (in ac-ft)
 -0.00091
 0.00091
 -1.00
 0.3894

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.905892
Root Mean Square Error 1.049497
Mean of Response 7.68
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	21.205111	10.6026	9.6260
Error	2	2.202889	1.1014	Prob>F
C Total	4	23.408000		0.0941

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	16.372681	2.05627	7.96	0.0154
Total Storage (in ac-ft)	-0.010444	0.00259	-4.04	0.0562
Total Storage (in ac-ft)^2	0.0000023	0	3.73	0.0650

Fish/hr by Total Storage Broad River Sites

Summary of Fit

Rsquare 0.999523
Root Mean Square Error 27.93413
Mean of Response 509.962
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	4909313.0	4909313	6291.447
Error	3	2340.9	780	Prob>F
C Total	4	4911653.9		0.0000

Parameter Estimates

 Term
 Estimate
 Std Error
 t Ratio
 Prob>|t|

 Intercept
 -27.44788
 14.2115
 -1.93
 0.1490

 Total Storage (in ac-ft)
 0.0093291
 0.00012
 79.32
 0.0000

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.999999
Root Mean Square Error 1.21401
Mean of Response 509.962
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	4911651.0	2455825	1666299
Error	2	2.9	1	Prob>F
C Total	4	4911653.9		0.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	23.682897	1.4246	16.62	0.0036
Total Storage (in ac-ft)	-0.002294	0.00029	-7.86	0.0158
Total Storage (in ac-ft)^2	4.2e-8	0	39.83	0.0006

Fish/hr by Total Storage Broad River Sites w/o Buzzards Roost

Summary of Fit

Rsquare 0.964421
Root Mean Square Error 1.112225
Mean of Response 14.4025
Observations (or Sum Wgts) 4

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	67.063988	67.0640	54.2131
Error	2	2.474087	1.2370	Prob>F
C Total	3	69.538075		0.0180

Parameter Estimates

 Term
 Estimate
 Std Error
 t Ratio
 Prob>|t|

 Intercept
 22.976305
 1.29043
 17.81
 0.0031

 Total Storage (in ac-ft)
 -0.001902
 0.00026
 -7.36
 0.0180

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.99643
Root Mean Square Error 0.49822
Mean of Response 14.4025
Observations (or Sum Wgts) 4

Analysis of Variance

Source Model	DF 2	Sum of Squares 69.289851	Mean	Square 34.6449	F Ratio 139.5715
Error C Total	1 3	0.248224 69.538075		0.2482	Prob>F 0.0597

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
intercept	15.944354	2.41837	6.59	0.0958
Total Storage (in ac-ft)	0.0019735	0.0013	1.52	0.3707
Total Storage (in ac-ft)^2	-4.2e-7	0	-2.99	0.2052

Fish/hr/kcfs by Total Storage All Data

Summary of Fit

Rsquare 0.734185
Root Mean Square Error 53.06343
Mean of Response 28.3814
Observations (or Sum Wgts) 38

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	279975.39	279975	99.4327
Error	36	101366.20	2816	Prob>F
C Total	37	381341.59		0.0000

Parameter Estimates

 Term
 Estimate
 Std Error
 t Ratio
 Prob>|t|

 Intercept
 -7.874435
 9.34441
 -0.84
 0.4050

 Total Storage (in ac-ft)
 0.0016713
 0.00017
 9.97
 0.00000

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.967168
Root Mean Square Error 18.91354
Mean of Response 28.3814
Observations (or Sum Wgts) 38

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	368821.31	184411	515.5136
Error	35	12520.28	358	Prob>F
C Total	37	381341.59		0.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	17.264032	3.69292	4.67	0.0000
Total Storage (in ac-ft)	-0.00141	0.0002	-6.90	0.0000
Total Storage (in ac-ft)^2	1.3e-8	0	15.76	0.0000

Fish/hr/kcfs by Total Storage All Data w/o Buzzards Roost

Summary of Fit

Rsquare 0.375759
Root Mean Square Error 17.99366
Mean of Response 12.30927
Observations (or Sum Wgts) 37

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	6821.241	6821.24	21.0681
Error	35	11332.009	323.77	Prob>F
C Total	36	18153.250		0.0001

Parameter Estimates

 Term
 Estimate
 Std Error
 t Ratio
 Prob>|t|

 Intercept
 5.8685088
 3.27408
 1.79
 0.0817

 Total Storage (in ac-ft)
 0.0004299
 0.00009
 4.59
 0.0001

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.445586
Root Mean Square Error 17.205
Mean of Response 12.30927
Observations (or Sum Wgts) 37

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	8088.840	4044.42	13.6630
Error	34	10064.409	296.01	Prob>F
C Total	36	18153.250		0.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	11.01659	3.99869	2.76	0.0094
Total Storage (in ac-ft)	-0.000382	0.0004	-0.95	0.3491
Total Storage (in ac-ft)^2	5.7e-9	0	2.07	0.0462

Fish/hr/kcfs by Total Storage All Data w/o Buzzards Roost and Youghiogheny

Summary of Fit

Rsquare 0.009632
Root Mean Square Error 9.725881
Mean of Response 8.964044
Observations (or Sum Wgts) 36

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	31.2780	31.2780	0.3307
Error	34	3216.1536	94.5928	Prob>F
C Total	35	3247.4316		0.5691

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	9.4283433	1.81095	5.21	0.0000
Total Storage (in ac-ft)	-0.000041	0.00007	-0.58	0.5691

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.033833
Root Mean Square Error 9.750773
Mean of Response 8.964044
Observations (or Sum Wgts) 36

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	109.8717	54.9358	0.5778
Error	33	3137.5599	95.0776	Prob>F
C Total	35	3247.4316		0.5667

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	8.1582233	2.29083	3.56	0.0011
Total Storage (in ac-ft)	0.000164	0.00024	0.69	0.4937
Total Storage (in ac-ft)^2	-1. 6e-9	0	-0.91	0.3698

Fish/hr/kcfs by Total Storage w/o Clupeid Sites

Summary of Fit

Rsquare 0.009264
Root Mean Square Error 9.841927
Mean of Response 9.007843
Observations (or Sum Wgts) 34

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	28.9840	28.9840	0.2992
Error	32	3099.6327	96.8635	Prob>F
C Total	33	3128.6168		0.5882

Parameter Estimates

 Term
 Estimate
 Std Error
 t Ratio
 Prob>|t|

 Intercept
 9.4715325
 1.88878
 5.01
 0.0000

 Total Storage (in ac-ft)
 -0.00004
 0.00007
 -0.55
 0.5882

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.039278
Root Mean Square Error 9.846777
Mean of Response 9.007843
Observations (or Sum Wgts) 34

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	122.8872	61,4436	0.6337
Error	31	3005.7296	96.9590	Prob>F
C Total	33	3128.6168		0.5374

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	8.0474781	2.38011	3.38	0.0020
Total Storage (in ac-ft)	0.0001861	0.00024	0.77	0.4456
Total Storage (in ac-ft)^2	-1.8e-9	0	-0.98	0.3327

Fish/hr/kcfs by Total Storage w/o Clupeids, Full-flow data only

Summary of Fit

Rsquare 0.239968
Root Mean Square Error 9.42922
Mean of Response 7.625004
Observations (or Sum Wgts) 14

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	336.8629	336.863	3.7888
Error	12	1066.9224	88.910	Prob>F
C Total	13	1403.7852		0.0754

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	2.3178763	3.71277	0.62	0.5441
Total Storage (in ac-ft)	0.001061	0.00055	1.95	0.0754

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.380777
Root Mean Square Error 8.889501
Mean of Response 7.625004
Observations (or Sum Wgts) 14

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	534.5297	267.265	3.3821
Error	11	869.2555	79.023	Prob>F
C Total	13	1403.7852		0.0716

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	7.4923668	4.79124	1.56	0.1462
Total Storage (in ac-ft)	-0.002096	0.00206	-1.02	0.3311
Total Storage (in ac-ft)^2	0.0000002	0	1.58	0.1421

Fish/hr/kcfs by Total Storage Au Sable River Sites

Summary of Fit

Rsquare 0.480563
Root Mean Square Error 3.783546
Mean of Response 7.181992
Observations (or Sum Wgts) 6

Analysis of Variance

Source	DF	Sum of	Squares	Mean	Square	F Ratio
Model	1		52.97565		52.9756	3.7007
Error	4		57.26089		14.3152	Prob>F
C Total	5	1	110.23654			0.1267

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	12.841287	3.32272	3.86	0.0181
Total Storage (in ac-ft)	-0.000299	0.00016	-1.92	0.1267

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.937307
Root Mean Square Error 1.517796
Mean of Response 7.181992
Observations (or Sum Wgts) 6

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	103.32543	51.6627	22.4259
Error	3	6.91111	2.3037	Prob>F
C Total	5	110.23654		0.0157

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	23.130202	2.573	8.99	0.0029
Total Storage (in ac-ft)	-0.001931	0.00035	-5.45	0.0122
Total Storage (in ac-ft)^2	4.5e-8	0	4.68	0.0185

Fish/hr/kcfs by Total Storage Au Sable River Sites w/o Five Channels

Summary of Fit

Rsquare 0.057919
Root Mean Square Error 1.917376
Mean of Response 5.369724
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of	Squares	Mean	Square	F Ratio
Model	1		0.678060		0.67806	0.1844
Error	3	1	1.028996		3.67633	Prob>F
C Total	4	1	1.707056			0.6966

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	6.3704468	2.48293	2.57	0.0828
Total Storage (in ac-ft)	-0.000046	0.00011	-0.43	0.6966

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.429469
Root Mean Square Error 1.827463
Mean of Response 5.369724
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	5.027813	2.51391	0.7528
Error	2	6.679242	3.33962	Prob>F
C Total	4	11.707056		0.5705

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	20.02253	12.1941	1.64	0.2423
Total Storage (in ac-ft)	-0.001591	0.00136	-1.17	0.3620
Total Storage (in ac-ft)^2	3.7e-8	0	1.14	0.3720

Fish/hr/kcfs by Total Storage Flambeau River Sites

Summary of Fit

Rsquare 0.174446
Root Mean Square Error 3.320405
Mean of Response 8.001698
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	6.989050	6.9890	0.6339
Error	3	33.075258	11.0251	Prob>F
C Total	4	40.064308		0.4841

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	10.014045	2.9314	3.42	0.0420
Total Storage (in ac-ft)	-0.000992	0.00125	-0.80	0.4841

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.241655
Root Mean Square Error 3.897599
Mean of Response 8.001698
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	9.681760	4.8409	0.3187
Error	2	30.382548	15.1913	Prob>F
C Total	4	40.064308		0.7583

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	12.884247	7.63651	1.69	0.2336
Total Storage (in ac-ft)	-0.004989	0.00961	-0.52	0.6553
Total Storage (in ac-ft)^2	0.0000009	0	0.42	0.7147

Fish/hr/kcfs by Total Storage Broad River Sites

Summary of Fit

Rsquare 0.999353
Root Mean Square Error 7.130597
Mean of Response 111.3464
Observations (or Sum Wgts) 6

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	314084.87	314085	6177.25
Error	4	203.38	51	Prob>F
C Total	5	314288.26		0.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-0.196897	3.23858	-0.06	0.9544
Total Storage (in ac-ft)	0.0023076	0.00003	78.60	0.0000

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.999748
Root Mean Square Error 5.140645
Mean of Response 111.3464
Observations (or Sum Wgts) 6

Analysis of Variance

Source Model	DF 2	Sum of Squares 314208.98	Mean	Square 157104	F Ratio 5945.021
Error	3	79.28		26	Prob>F
C Total	5	314288.26			0.0000

Parameter Estimates

				I
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	9.0888613	4.87974	1.86	0.1594
Total Storage (in ac-ft)	-0.000066	0.0011	-0.06	0.9560
Total Storage (in ac-ft)^2	8.7e-9	0	2.17	0.1188

Fish/hr/kcfs by Total Storage Broad River Sites w/o Buzzards Roost

Summary of Fit

Rsquare 0.823097 Root Mean Square Error 1.342357 Mean of Response 7.284912 Observations (or Sum Wgts) 4

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	16.768058	16.7681	9.3057
Error	2	3.603844	1.8019	Prob>F
C Total	3	20.371902		0.0928

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	2.9977463	1.55743	1.92	0.1941
Total Storage (in ac-ft)	0.0009512	0.00031	3.05	0.0928

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.841928
Root Mean Square Error 1.794499
Mean of Response 7.284912
Observations (or Sum Wgts) 4

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	17.151677	8.57584	2.6631
Error	1	3.220225	3.22023	Prob>F
C Total	3	20.371902		0.3976

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	5.9170318	8.71052	0.68	0.6201
Total Storage (in ac-ft)	-0.000658	0.00468	-0.14	0.9111
Total Storage (in ac-ft)^2	0.0000002	0	0.35	0.7884

Fish/hr by Hydraulic Capacity All Data

Summary of Fit

Rsquare 0.016843
Root Mean Square Error 384.6259
Mean of Response 83.86833
Observations (or Sum Wgts) 42

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	101377.8	101378	0.6853
Error	40	5917483.1	147937	Prob>F
C Total	41	6018861.0		0.4127

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	17.11948	100.12	0.17	0.8651
Plant Flow (in cfs)	0.0269273	0.03253	0.83	0.4127

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.038454
Root Mean Square Error 385.2209
Mean of Response 83.86833
Observations (or Sum Wgts) 42

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	231449.3	115725	0.7798
Error	39	5787411.7	148395	Prob>F
C Total	41	6018861.0		0.4655

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-73.2061	139.151	-0.53	0.6018
Plant Flow (in cfs)	0.0965419	0.08118	1.19	0.2415
Plant Flow (in cfs)^2	-0.000009	0	-0.94	0.3549

Fish/hr by Hydraulic Capacity
All Data w/o Buzzards Roost and Hawks Nest

Summary of Fit

Rsquare 0.00444
Root Mean Square Error 44.89698
Mean of Response 25.61925
Observations (or Sum Wgts) 40

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	341.649	341.65	0.1695
Error	38	76598.068	2015.74	Prob>F
C Total	39	76939.717		0.6829

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	20.931123	13.4189	1.56	0.1271
Plant Flow (in cfs)	0.002081	0.00505	0.41	0.6829

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.005112
Root Mean Square Error 45.48431
Mean of Response 25.61925
Observations (or Sum Wgts) 40

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	393.296	196.65	0.0951
Error	37	76546.421	2068.82	Prob>F
C Total	39	76939.717		0.9095

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	23.849703	22.9352	1.04	0.3051
Plant Flow (in cfs)	-0.001192	0.02134	-0.06	0.9558
Plant Flow (in cfs)^2	0.0000006	0	0.16	0.8753

Fish/hr by Hydraulic Capacity w/o Clupeid Sites

Summary of Fit

Rsquare 0.022908
Root Mean Square Error 33.79239
Mean of Response 20.24946
Observations (or Sum Wgts) 37

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	937.043	937.04	0.8206
Error	35	39967.392	1141.93	Prob>F
C Total	36	40904.435		0.3712

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	12.312695	10.3744	1.19	0.2433
Plant Flow (in cfs)	0.0035676	0.00394	0.91	0.3712

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.04103
Root Mean Square Error 33.9663
Mean of Response 20.24946
Observations (or Sum Wgts) 37

Analysis of Variance

Source Model	DF 2	Sum of Squares 1678.311	Mean Square 839.16	F Ratio 0.7274
Error	34	39226.124	1153.71	Prob>F
C Total	36	40904.435		0.4906

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	23.212785	17.1364	1.35	0.1845
Plant Flow (in cfs)	-0.00895	0.01611	-0.56	0.5822
Plant Flow (in cfs)^2	0.0000024	0	0.80	0.4284

Fish/hr by Hydraulic Capacity w/o Clupeids, Full-flow data only

Summary of Fit

Rsquare 0.425995
Root Mean Square Error 21.77983
Mean of Response 18.96937
Observations (or Sum Wgts) 16

Analysis of Variance

Source	DF	Sum of	Squares	Mean	Square	F Ratio
Model	1		4928.620		4928.62	10.3900
Error	14		6641.054		474.36	Prob>F
C Total	15	•	11569.674		·	0.0061

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-11.91458	11.0204	-1.08	0.2979
Plant Flow (in cfs)	0.013335	0.00414	3.22	0.0061

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.426197
Root Mean Square Error 22.59802
Mean of Response 18.96937
Observations (or Sum Wgts) 16

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	4930.958	2465.48	4.8279
Error	13	6638.715	510.67	Prob>F
C Total	15	11569.674		0.0270

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-13.48692	25.8975	-0.52	0.6113
Plant Flow (in cfs)	0.0147146	0.02083	0.71	0.4925
Plant Flow (in cfs)^2	-2.3e-7	0	-0.07	0.9471

Fish/hr by Hydraulic Capacity w/o Clupeids, Full-flow data only w/o Wisconsin River Division

Summary of Fit

Rsquare 0.236187
Root Mean Square Error 21.01728
Mean of Response 14.86067
Observations (or Sum Wgts) 15

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	1775.6782	1775.68	4.0199
Error	13	5742.4395	441.73	Prob>F
C Total	. 14	7518.1177		0.0662

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-5.545318	11.5341	-0.48	0.6387
Plant Flow (in cfs)	0.0095845	0.00478	2.00	0.0662

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.266287
Root Mean Square Error 21.44011
Mean of Response 14.86067
Observations (or Sum Wgts) 15

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	2001.9758	1000.99	2.1776
Error	12	5516.1419	459.68	Prob>F
C Total	14	7518.1177		0.1560

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-21.05662	25.0434	-0.84	0.4169
Plant Flow (in cfs)	0.0236053	0.02057	1.15	0.2735
Plant Flow (in cfs)^2	-0.000002	0	-0.70	0.4963

Fish/hr by Hydraulic Capacity Au Sable River Sites

Summary of Fit

Rsquare 0.001429
Root Mean Square Error 15.49324
Mean of Response 22.39167
Observations (or Sum Wgts) 6

Analysis of Variance

Source	DF	Sum of Squares	Mean	Square	F Ratio
Model	1	1.37405		1.374	0.0057
Error	4	960.16243		240.041	Prob>F
C Total	5	961.53648			0.9433

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	25.414245	40.4478	0.63	0.5639
Plant Flow (in cfs)	-0.000947	0.01252	-0.08	0.9433

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.100314
Root Mean Square Error 16.98117
Mean of Response 22.39167
Observations (or Sum Wgts) 6

Analysis of Variance

Source	ÐF	Sum of Squares	Mean Square	F Ratio
Model	2	96.45565	48.228	0.1672
Error	3	865.08083	288.360	Prob>F
C Total	5	961.53648		0.8534

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-174.0009	350.097	-0.50	0.6533
Plant Flow (in cfs)	0.1225249	0.21546	0.57	0.6094
Plant Flow (in cfs)^2	-0.000019	0.00003	-0.57	0.6060

Fish/hr by Hydraulic Capacity Flambeau River Sites

Summary of Fit

Rsquare 0.014198
Root Mean Square Error 2.773424
Mean of Response 7.68
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean	Square	F Ratio
Model	1	0.332354		0.33235	0.0432
Error	3	23.075646		7.69188	Prob>F
C Total	4	23.408000			0.8486

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	6.8857388	4.01728	1.71	0.1850
Plant Flow (in cfs)	0.000763	0.00367	0.21	0.8486

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.811564
Root Mean Square Error 1.485077
Mean of Response 7.68
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	18.997093	9.49855	4.3068
Error	2	4.410907	2.20545	Prob>F
C Total	4	23.408000		0.1884

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-32.61194	13.7465	-2.37	0.1410
Plant Flow (in cfs)	0.0817473	0.02791	2.93	0.0995
Plant Flow (in cfs)^2	-0.000037	0.00001	-2.91	0.1006

Fish/hr by Hydraulic Capacity Broad River Sites

Summary of Fit

Rsquare 0.213949
Root Mean Square Error 1134.432
Mean of Response 509.962
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	1050843.2	1050843	0.8165
Error	3	3860810.7	1286937	Prob>F
C Total	4	4911653.9		0.4328

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-383.9496	1111.75	-0.35	0.7526
Plant Flow (in cfs)	0.3288132	0.36388	0.90	0.4328

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.220499
Root Mean Square Error 1383.589
Mean of Response 509.962
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	1083016.3	541508	0.2829
Error	2	3828637.6	1914319	Prob>F
C Total	4	4911653.9		0.7795

Parameter Estimates

05749E.B02

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-700.9644	2796.12	-0.25	0.8255
Plant Flow (in cfs)	0.6525692	2.53647	0.26	0.8210
Plant Flow (in cfs)^2	-0.00006	0.00047	-0.13	0.9087

A4-118

Fish/hr by Hydraulic Capacity Broad River Sites w/o Buzzards Roost

Summary of Fit

Rsquare 0.812826
Root Mean Square Error 2.551048
Mean of Response 14.4025
Observations (or Sum Wgts) 4

Analysis of Variance

Source	DF	Sum of Squares	Mean	Square	F Ratio
Model	1	56.522380		56.5224	8.6853
Error	2	13.015695		6.5078	Prob>F
C Total	3	69.538075			0.0984

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	7.8908013	2.55128	3.09	0.0906
Plant Flow (in cfs)	0.0027152	0.00092	2.95	0.0984

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.995349
Root Mean Square Error 0.568684
Mean of Response 14.4025
Observations (or Sum Wgts) 4

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	69.214673	34.6073	107.0103
Error	1	0.323402	0.3234	Prob>F
C Total	3	69.538075		0.0682

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	1.5050512	1.16726	1.29	0.4200
Plant Flow (in cfs)	0.0092247	0.00106	8.71	0.0728
Plant Flow (in cfs)^2	-0.000001	0	-6.26	0.1008

Fish/hr/kcfs by Hydraulic Capacity All Data

Summary of Fit

Rsquare 0.000916
Root Mean Square Error 102.5617
Mean of Response 32.16345
Observations (or Sum Wgts) 42

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	385.86	385.9	0.0367
Error	40	420756.41	10518.9	Prob>F
C Total	41	421142.27		0.8491

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	28.045458	26.6972	1.05	0.2998
Plant Flow (in cfs)	0.0016612	0.00867	0.19	0.8491

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.006414
Root Mean Square Error 103.5821
Mean of Response 32.16345
Observations (or Sum Wgts) 42

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	2701.14	1350.6	0.1259
Error	39	418441.13	10729.3	Prob>F
C Total	41	421142.27		0.8821

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	15.994489	37.4164	0.43	0.6714
Plant Flow (in cfs)	0.010949	0.02183	0.50	0.6188
Plant Flow (in cfs)^2	-0.000001	0	-0.46	0.6448

Fish/hr/kcfs by Hydraulic Capacity All Data w/o Buzzards Roost and Hawks Nest

Summary of Fit

Rsquare 0.06185
Root Mean Square Error 39.49312
Mean of Response 18.18162
Observations (or Sum Wgts) 40

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	3907.424	3907.42	2.5052
Error	38	59268.856	1559.71	Prob>F
C Total	39	63176.280		0.1218

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	34.036185	11.8038	2.88	0.0064
Plant Flow (in cfs)	-0.007038	0.00445	-1.58	0.1218

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.080196
Root Mean Square Error 39.62997
Mean of Response 18.18162
Observations (or Sum Wgts) 40

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	5066.507	2533.25	1.6130
Error	37	58109.774	1570.53	Prob>F
C Total	39	63176.280		0.2130

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	47.862596	19.9832	2.40	0.0218
Plant Flow (in cfs)	-0.022541	0.01859	-1.21	0.2330
Plant Flow (in cfs)^2	0.000003	0	0.86	0.3958

Fish/hr/kcfs by Hydraulic Capacity w/o Clupeid Sites

Summary of Fit

Rsquare 0.062753
Root Mean Square Error 36.48728
Mean of Response 15.2143
Observations (or Sum Wgts) 37

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Modei	1	3119.811	3119.81	2.3434
Error	35	46596.266	1331.32	Prob>F
C Total	36	49716.077		0.1348

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	29.696277	11.2017	2.65	0.0120
Plant Flow (in cfs)	-0.00651	0.00425	-1.53	0.1348

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.101966
Root Mean Square Error 36.23725
Mean of Response 15.2143
Observations (or Sum Wgts) 37

Analysis of Variance

Source Model	DF 2	Sum of Squares 5069.366	Mean Square 2534.68	F Ratio 1.9302
Error	34	44646.711	1313.14	Prob>F
C Total	36	49716.077		0.1607

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	47.373348	18.2822	2.59	0.0140
Plant Flow (in cfs)	-0.02681	0.01719	-1.56	0.1281
Plant Flow (in cfs)^2	0.000004	0	1.22	0.2314

I.

Fish/hr/kcfs by Hydraulic Capacity w/o Clupeids, Full-flow data only

Summary of Fit

Rsquare 0.000059
Root Mean Square Error 11.19584
Mean of Response 8.502351
Observations (or Sum Wgts) 16

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	0.1027	0.103	0.0008
Error	14	1754.8564	125.347	Prob>F
C Total	15	1754.9590		0.9776

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	8.3613958	5.66499	1.48	0.1621
Plant Flow (in cfs)	0.0000609	0.00213	0.03	0.9776

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.141925 Root Mean Square Error 10.76278 Mean of Response 8.502351 Observations (or Sum Wgts) 16

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	249.0720	124.536	1.0751
Error	13	1505.8871	115.837	Prob>F
C Total	15	1754.9590		0.3698

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	24.585958	12.3342	1.99	0.0676
Plant Flow (in cfs)	-0.014174	0.00992	-1.43	0.1767
Plant Flow (in cfs)^2	0.0000024	0	1.47	0.1664

Fish/hr/kcfs by Hydraulic Capacity w/o Clupeids, Full-flow data only w/o Prickett

Summary of Fit

Rsquare 0.239375
Root Mean Square Error 5.980685
Mean of Response 6.319434
Observations (or Sum Wgts) 15

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	146.33696	146.337	4.0912
Error	13	464.99172	35.769	Prob>F
C Total	14	611.32868		0.0642

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	0.4138102	3.30292	0.13	0.9022
Plant Flow (in cfs)	0.0024327	0.0012	2.02	0.0642

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.282843
Root Mean Square Error 6.044411
Mean of Response 6.319434
Observations (or Sum Wgts) 15

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	172.90984	86.4549	2.3664
Error	12	438.41884	36.5349	Prob>F
C Total	14	611.32868		0.1360

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-6.743579	9.03196	-0.75	0.4697
Plant Flow (in cfs)	0.008268	0.00695	1.19	0.2572
Plant Flow (in cfs)^2	-9.3e-7	0	-0.85	0.4104
				,

Fish/hr/kcfs by Hydraulic Capacity Au Sable River Sites

Summary of Fit

Rsquare 0.060069
Root Mean Square Error 5.089566
Mean of Response 7.181992
Observations (or Sum Wgts) 6

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	6.62182	6.6218	0.2556
Error	4	103.61471	25.9037	Prob>F
C Total	5	110.23654		0.6397

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	13.817363	13.2872	1.04	0.3571
Plant Flow (in cfs)	-0.002079	0.00411	-0.51	0.6397

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.137132
Root Mean Square Error 5.630855
Mean of Response 7.181992
Observations (or Sum Wgts) 6

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	15.11697	7.5585	0.2384
Error	3	95.11957	31.7065	Prob>F
C Total	5	110.23654		0.8015

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-45.78938	116.09	-0.39	0.7196
Plant Flow (in cfs)	0.0348278	0.07145	0.49	0.6593
Plant Flow (in cfs)^2	-0.000006	0.00001	-0.52	0.6405

Fish/hr/kcfs by Hydraulic Capacity Flambeau River Sites

Summary of Fit

Rsquare 0.461449
Root Mean Square Error 2.681832
Mean of Response 8.001698
Observations (or Sum Wgts) 5

Analysis of Variance

Source Model	DF 1	Sum of Squares 18.487643	Mean Square 18.4876	F Ratio 2.5705
Error	3	21.576666	7.1922	Prob>F
C Total	4	40.064308		0.2072

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	13.925546	3.88461	3.58	0.0372
Plant Flow (in cfs)	-0.005691	0.00355	-1.60	0.2072

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.894256
Root Mean Square Error 1.455433
Mean of Response 8.001698
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	35.827738	17.9139	8.4568
Error	2	4.236571	2.1183	Prob>F
C Total	4	40.064308		0.1057

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-24.14476	13.4721	-1.79	0.2150
Plant Flow (in cfs)	0.0723671	0.02735	2.65	0.1181
Plant Flow (in cfs)^2	-0.000036	0.00001	-2.86	0.1035

Fish/hr/kcfs by Hydraulic Capacity Broad River Sites

Summary of Fit

Rsquare 0.204641
Root Mean Square Error 283.593
Mean of Response 130.4379
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	62078.66	62078.7	0.7719
Error	3	241275.02	80425.0	Prob>F
C Total	4	303353.69		0.4443

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-86.83058	277.923	-0.31	0.7752
Plant Flow (in cfs)	0.0799193	0.09097	0.88	0.4443

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.210822
Root Mean Square Error 345.9769
Mean of Response 130.4379
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	. 2	63953.59	31977	0.2671
Error	2	239400.10	119700	Prob>F
C Total	4	303353.69		0.7892

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-163.3595	699.19	-0.23	0.8370
Plant Flow (in cfs)	0.1580755	0.63426	0.25	0.8264
Plant Flow (in cfs)^2	-0.000015	0.00012	-0.13	0.9118

Fish/hr/kcfs by Hydraulic Capacity Broad River Sites w/o Buzzards Roost

Summary of Fit

Rsquare 0.964565
Root Mean Square Error 0.600785
Mean of Response 7.284912
Observations (or Sum Wgts) 4

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	19.650017	19.6500	54.4409
Error	2	0.721885	0.3609	Prob>F
C Total	3	20.371902		0.0179

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	11.124331	0.60084	18.51	0.0029
Plant Flow (in cfs)	-0.001601	0.00022	-7.38	0.0179

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.985621
Root Mean Square Error 0.541236
Mean of Response 7.284912
Observations (or Sum Wgts) 4

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	20.078965	10.0395	34.2718
Error	1	0.292937	0.2929	Prob>F
C Total	3	20.371902		0.1199

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	12.298267	1.11092	11.07	0.0574
Plant Flow (in cfs)	-0.002798	0.00101	-2.78	0.2202
Plant Flow (in cfs)^2	0.0000002	0	1.21	0.4397

Fish/hr by Flush Rate All Data

Summary of Fit

Rsquare 0.264938
Root Mean Square Error 359.7827
Mean of Response 88.73917
Observations (or Sum Wgts) 36

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	1586283.0	1586283	12.2546
Error	34	4401082.0	129444	Prob>F
C Total	35	5987365.1		0.0013

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-16.70332	67.1038	-0.25	0.8049
Reservoir Flush Rate (in days)	20.035519	5.72335	3.50	0.0013

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.28977
Root Mean Square Error 358.9718
Mean of Response 88.73917
Observations (or Sum Wgts) 36

Analysis of Variance

				
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	1734959.8	867480	6.7319
Error	33	4252405.3	128861	Prob>F
C Total	35	5987365.1		0.0035

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-60.10756	78.2015	-0.77	0.4476
Reservoir Flush Rate (in days)	43.587193	22.6575	1.92	0.0630
Reservoir Flush Rate (in days)^2	-0.585916	0.54547	-1.07	0.2906

A4-140

Fish/hr by Flush Rate All Data w/o Buzzards Roost

Summary of Fit

Rsquare 0.466429
Root Mean Square Error 27.18141
Mean of Response 20.06886
Observations (or Sum Wgts) 35

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	21313.343	21313.3	28.8475
Error	33	24381.355	738.8	Prob>F
C Total	34	45694.698		0.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	8.4265519	5.08016	1.66	0.1066
Reservoir Flush Rate (in days)	2.6211288	0.48802	5.37	0.0000

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.754568
Root Mean Square Error 18.72075
Mean of Response 20.06886
Observations (or Sum Wgts) 35

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	34479.776	17239.9	49.1913
Error	32	11214.922	350.5	Prob>F
C Total	34	45694.698		0.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	22.060922	4.14612	5.32	0.0000
Reservoir Flush Rate (in days)	-4.82774	1.26091	-3.83	0.0006
Reservoir Flush Rate (in days)^2	0.1795001	0.02929	6.13	0.0000

Fish/hr by Flush Rate All Data w/o Buzzards Roost, Abbeville and Youghiogheny

Summary of Fit

Rsquare 0.009147
Root Mean Square Error 15.36396
Mean of Response 14.41265
Observations (or Sum Wgts) 34

Analysis of Variance

_				
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	69.7334	69.733	0.2954
Error	32	7553.6367	236.051	Prob>F
C Total	33	7623.3701		0.5905

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	15.169817	2.9805	5.09	0.0000
Reservoir Flush Rate (in days)	-0.237357	0.4367	-0.54	0.5905

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.023648
Root Mean Square Error 15.49515
Mean of Response 14.41265
Observations (or Sum Wgts) 34

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	180.2771	90.139	0.3754
Error	31	7443.0929	240.100	Prob>F
C Total	33	7623.3701		0.6901

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	16.628253	3.69535	4.50	0.0001
Reservoir Flush Rate (in days)	-1.138009	1.39851	-0.81	0.4220
Reservoir Flush Rate (in days)^2	0.0303697	0.04476	0.68	0.5025

Fish/hr by Flush Rate w/o Clupeid Sites

Summary of Fit

Rsquare 0.007176
Root Mean Square Error 15.41132
Mean of Response 13.98273
Observations (or Sum Wgts) 33

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	53.2164	53.216	0.2241
Error	31	7362.7732	237.509	Prob>F
C Total	32	7415.9897		0.6393

Parameter Estimates

<u> </u>				
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	14.662349	3.04281	4.82	0.0000
Reservoir Flush Rate (in days)	-0.207932	0.43928	-0.47	0.6393

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.018862
Root Mean Square Error 15.5736
Mean of Response 13.98273
Observations (or Sum Wgts) 33

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	139.8776	69.939	0.2884
Error	30	7276.1121	242.537	Prob>F
C Total	32	7415.9897		0.7515

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	15.989798	3.79293	4.22	0.0002
Reservoir Flush Rate (in days)	-1.010414	1.41398	-0.71	0.4804
Reservoir Flush Rate (in days)^2	0.0269991	0.04517	0.60	0.5545

Fish/hr by Flush Rate w/o Clupeids, Full-flow data only

Summary of Fit

Rsquare 0.007176
Root Mean Square Error 20.92807
Mean of Response 14.49429
Observations (or Sum Wgts) 14

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	37.9869	37.987	0.0867
Error	12	5255.8094	437.984	Prob>F
C Total	13	5293.7963		0.7734

Parameter Estimates

 Term
 Estimate
 Std Error
 t Ratio
 Prob>|t|

 Intercept
 15.550793
 6.64487
 2.34
 0.0374

 Reservoir Flush Rate (in days)
 -0.614503
 2.08659
 -0.29
 0.7734

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.04442
Root Mean Square Error 21.44474
Mean of Response 14.49429
Observations (or Sum Wgts) 14

(Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	235.1517	117.576	0.2557
Error	11	5058.6446	459.877	Prob>F
C Total	13	5293.7963		0.7789

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	19.614157	9.21261	2.13	0.0567
Reservoir Flush Rate (in days)	-5.883099	8.32561	-0.71	0.4945
Reservoir Flush Rate (in days)^2	0.492519	0.75219	0.65	0.5261

05749F.B02 A4-148

Fish/hr by Flush Rate Au Sable River Sites

05749F.B02 A4-149

Summary of Fit

Rsquare 0.453885 Root Mean Square Error 11.45763 Mean of Response 22.39167 Observations (or Sum Wgts) 6

Analysis of Variance

Source	DF	Sum of Squares	Mean	Square	F Ratio
Model	1	436.42740		436.427	3.3245
Error	4	525.10909		131.277	Prob>F
C Total	5	961.53648			0.1423

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	42.175966	11.816	3.57	0.0234
Reservoir Flush Rate (in days)	-6.95406	3.81397	-1.82	0.1423

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.901932
Root Mean Square Error 5.606411
Mean of Response 22.39167
Observations (or Sum Wgts) 6

Analysis of Variance

				1
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	867.24097	433.620	13.7956
Error	3 .	94.29552	31.432	Prob>F
C Total	5	961.53648		0.0307

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	72.76485	10.0844	7.22	0.0055
Reservoir Flush Rate (in days)	-40.2114	9.17494	-4.38	0.0220
Reservoir Flush Rate (in days)^2	6.6708946	1.80187	3.70	0.0342

05749F.B02 A4-150

Fish/hr by Flush Rate Au Sable River Sites w/o Five Channels

Summary of Fit

Rsquare 0.082865
Root Mean Square Error 6.281992
Mean of Response 17.124
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	10.69685	10.6968	0.2711
Error	3	118.39027	39.4634	Prob>F
C Total	4	129.08712		0.6386

Parameter Estimates

			*	
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	11.261147	11.6062	0.97	0.4035
Reservoir Flush Rate (in days)	1.7874552	3.43324	0.52	0.6386

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.274219
Root Mean Square Error 6.844304
Mean of Response 17.124
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	35.39814	17.6991	0.3778
Error	2	93.68898	46.8445	Prob>F
C Total	4	129.08712		0.7258

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	84.198914	101.236	0.83	0.4931
Reservoir Flush Rate (in days)	-47.90497	68.5342	-0.70	0.5569
Reservoir Flush Rate (in days)^2	7.8800649	10.8517	0.73	0.5432

Fish/hr by Flush Rate Flambeau River Sites

Summary of Fit

Rsquare 0.362857
Root Mean Square Error 2.229666
Mean of Response 7.68
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	8.493768	8.49377	1.7085
Error	3	14.914232	4.97141	Prob>F
C Total	4	23.408000		0.2823

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	9.6298094	1.79428	5.37	0.0127
Reservoir Flush Rate (in days)	-1.779023	1.36104	-1.31	0.2823

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.491498
Root Mean Square Error 2.439571
Mean of Response 7.68
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	11.504990	5.75249	0.9666
Error C Total	2	11.903010 23.408000	5.95151	Prob>F 0.5085

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	11.316253	3.0782	3.68	0.0667
Reservoir Flush Rate (in days)	-5.957514	6.06019	-0.98	0.4292
Reservoir Flush Rate (in days)^2	1.6647005	2.34034	0.71	0.5507

Fish/hr by Flush Rate Broad River Sites

Summary of Fit

Rsquare 0.985132
Root Mean Square Error 156.0219
Mean of Response 509.962
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	4838625.4	4838625	198.7700
Error	3	73028.5	24343	Prob>F
C Total	4	4911653.9		0.0008

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-114.764	82.6563	-1.39	0.2591
Reservoir Flush Rate (in days)	75.834666	5.37889	14.10	0.0008

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.999988
Root Mean Square Error 5.426225
Mean of Response 509.962
Observations (or Sum Wgts) 5

Analysis of Variance

Source Model	DF	Sum of Squares 4911595.0	Mean Square 2455798	F Ratio 83405.94
Error	2	4911393.0 58.9	2433798	Prob>F
C Total	4	4911653.9		0.0000

Parameter Estimates

05749G.B02

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	25.239809	4.02156	6.28	0.0245
Reservoir Flush Rate (in days)	-14.85436	1.8313	-8.11	0.0149
Reservoir Flush Rate (in days)^2	2.5709175	0.05164	49.78	0.0004

A4-156

Fish/hr by Flush Rate Broad River Sites w/o Buzzards Roost

Summary of Fit

Rsquare 0.964313
Root Mean Square Error 1.113917
Mean of Response 14.4025
Observations (or Sum Wgts) 4

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	67.056451	67.0565	54.0424
Error	2	2.481624	1.2408	Prob>F
C Total	3	69.538075		0.0180

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	18.693282	0.80677	23.17	0.0019
Reservoir Flush Rate (in days)	-2.387083	0.32471	-7.35	0.0180

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.999754
Root Mean Square Error 0.130708
Mean of Response 14.4025
Observations (or Sum Wgts) 4

Analysis of Variance

Source	DF	Sum of Squares	Mean	Square	F Ratio
Model	2	69.520991		34.7605	2034.623
Error	1	0.017084		0.0171	Prob>F
C Total	3	69.538075			0.0157

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	19.827791	0.13373	148.27	0.0043
Reservoir Flush Rate (in days)	-4.518623	0.18151	-24.89	0.0256
Reservoir Flush Rate (in days)^2	0.4368901	0.03638	12.01	0.0529

Fish/hr/kcfs by Flush Rate All Data

Summary of Fit

Rsquare 0.374603
Root Mean Square Error 83.58222
Mean of Response 29.88386
Observations (or Sum Wgts) 36

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	. 1	142272.72	142273	20.3654
Error	34	237523.56	6986	Prob>F
C Total	35	379796.28		0.0001

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-1.694246	15.5891	-0.11	0.9141
Reservoir Flush Rate (in days)	6.0002741	1.32961	4.51	0.0001

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.38758
Root Mean Square Error 83.95432
Mean of Response 29.88386
Observations (or Sum Wgts) 36

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	147201.44	73600.7	10.4423
Error	33	232594.84	7048.3	Prob>F
C Total	35	379796.28		0.0003

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-9.596982	18.2893	-0.52	0.6033
Reservoir Flush Rate (in days)	10.288396	5.29901	1.94	0.0608
Reservoir Flush Rate (in days)^2	-0.106679	0.12757	-0.84	0.4090

Fish/hr/kcfs by Flush Rate All Data w/o Buzzards Roost

Summary of Fit

Rsquare 0.687445
Root Mean Square Error 13.01972
Mean of Response 12.93626
Observations (or Sum Wgts) 35

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	12303.535	12303.5	72.5816
Error	33	5593.936	169.5	Prob>F
C Total	34	17897.470		0.0000

Parameter Estimates

					t
Term		Estimate	Std Error	t Ratio	Prob> t
Intercept		4.0906418	2.43336	1.68	0.1022
Reservoir Flush Rate	(in days)	1.9914872	0.23376	8.52	0.0000

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.803211
Root Mean Square Error 10.4911
Mean of Response 12.93626
Observations (or Sum Wgts) 35

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	14375.451	7187.73	65.3055
Error	32	3522.019	110.06	Prob>F
C Total	34	17897.470		0.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	9.4992702	2.32349	4.09	0.0003
Reservoir Flush Rate (in days)	-0.96341	0.70661	-1.36	0.1823
Reservoir Flush Rate (in days)^2	0.071206	0.01641	4.34	0.0001

Fish/hr/kcfs by Flush Rate All Data w/o Buzzards Roost and Youghiogheny

Summary of Fit

Rsquare 0.069845
Root Mean Square Error 8.844146
Mean of Response 8.734445
Observations (or Sum Wgts) 33

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	. 1	182.0765	182.077	2.3278
Error	31	2424.7864	78.219	Prob>F
C Total	32	2606.8630		0.1372

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	6.9862502	1.91916	3.64	0.0010
Reservoir Flush Rate (in days)	0.7665485	0.50242	1.53	0.1372

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.131002
Root Mean Square Error 8.689762
Mean of Response 8.734445
Observations (or Sum Wgts) 33

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	. 2	341.5043	170.752	2.2613
Error	30	2265.3587	75.512	Prob>F
C Total	32	2606.8630		0.1217

Parameter Estimates

				ļ
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	4.652716	2.47687	1.88	0.0701
Reservoir Flush Rate (in days)	2.762924	1.45993	1.89	0.0681
Reservoir Flush Rate (in days)^2	-0.152108	0.10468	-1.45	0.1566

Fish/hr/kcfs by Flush Rate w/o Clupeid Sites

Summary of Fit

Rsquare 0.236505
Root Mean Square Error 8.709298
Mean of Response 9.216445
Observations (or Sum Wgts) 33

Analysis of Variance

DF Sum of Squares Mean Square F Ratio Source 728.385 Model 1 728.3852 9.6027 31 75.852 Error 2351.4083 Prob>F C Total 32 3079.7935 0.0041

Parameter Estimates

 Term
 Estimate
 Std Error
 t Ratio
 Prob>|t|

 Intercept
 6.7020982
 1.71956
 3.90
 0.0005

 Reservoir Flush Rate (in days)
 0.7692698
 0.24825
 3.10
 0.0041

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.242021
Root Mean Square Error 8.821223
Mean of Response 9.216445
Observations (or Sum Wgts) 33

Analysis of Variance

DF Sum of Squares Mean Square F Ratio Source 2 745.3745 372.687 4.7895 Model 30 77.814 Prob>F Error 2334,4190 32 3079.7935 0.0157 C Total

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	6.1143486	2.1484	2.85	0.0079
Reservoir Flush Rate (in days)	1.1245819	0.80091	1.40	0.1705
Reservoir Flush Rate (in days)^2	-0.011954	0.02558	-0.47	0.6437

Fish/hr/kcfs by Flush Rate w/o Clupeid Sites w/o Abbeville

Summary of Fit

Rsquare 0.079675
Root Mean Square Error 8.851708
Mean of Response 8.510869
Observations (or Sum Wgts) 32

Analysis of Variance

<u> </u>				
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	203.4953	203.495	2.5972
Error	30	2350.5821	78.353	Prob>F
C Total	31	2554.0773		0.1175

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	6.6111971	1.95909	3.37	0.0021
Reservoir Flush Rate (in days)	0.8142178	0.50523	1.61	0.1175

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.15122
Root Mean Square Error 8.646008
Mean of Response 8.510869
Observations (or Sum Wgts) 32

Analysis of Variance

Source	DF 2	Sum of Squares 386.2271	Mean Square 193,114	F Ratio 2.5833
Model Error	-29	2167.8502	74.753	2.5033 Prob>F
C Total	31	2554.0773		0.0928

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	4.0444047	2.5213	1.60	0.1195
Reservoir Flush Rate (in days)	2.9687159	1.46372	2.03	0.0518
Reservoir Flush Rate (in days)^2	-0.163604	0.10464	-1.56	0.1288

Fish/hr/kcfs by Flush Rate w/o Clupeids, Full-flow data only

Summary of Fit

Rsquare 0.751054
Root Mean Square Error 5.396503
Mean of Response 7.625004
Observations (or Sum Wgts) 14

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	1054.3183	1054.32	36.2032
Error	12	349.4669	29.12	Prob>F
C Total	13	1403.7852		0.0001

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	2.0590294	1.71344	1.20	0.2527
Reservoir Flush Rate (in days)	3.2373761	0.53805	6.02	0.0001

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.867448
Root Mean Square Error 4.112885
Mean of Response 7.625004
Observations (or Sum Wgts) 14

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	1217.7112	608.856	35.9933
Error	11	186.0741	16.916	Prob>F
C Total	13	1403.7852		0.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	5.7580573	1.76689	3.26	0.0076
Reservoir Flush Rate (in days)	<i>-</i> 1.558817	1.59677	-0.98	0.3499
Reservoir Flush Rate (in days)^2	0.4483578	0.14426	3.11	0.0100

Fish/hr/kcfs by Flush Rate w/o Clupeids, Full-flow data only w/o Prickett

Summary of Fit

Rsquare 0.00442
Root Mean Square Error 4.107978
Mean of Response 5.038765
Observations (or Sum Wgts) 13

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	0.82420	0.8242	0.0488
Error	11	185.63035	16.8755	Prob>F
C Total	12	186.45455		0.8291

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	5.3086021	1.67001	3.18	0.0088
Reservoir Flush Rate (in days)	-0.264347	1.19615	-0.22	0.8291

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.005591
Root Mean Square Error 4.30595
Mean of Response 5.038765
Observations (or Sum Wgts) 13

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	1.04249	0.5212	0.0281
Error	10	185.41206	18.5412	Prob>F
C Total	12	186.45455		0.9724

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	5.4806196	2.3617	2.32	0.0427
Reservoir Flush Rate (in days)	-0.746163	4.61419	-0.16	0.8748
Reservoir Flush Rate (in days)^2	0.1640659	1.51209	0.11	0.9157

Fish/hr/kcfs by Flush Rate Au Sable River Sites

Summary of Fit

Rsquare 0.633961
Root Mean Square Error 3.176118
Mean of Response 7.181992
Observations (or Sum Wgts) 6

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	69.88564	69.8856	6.9278
Error	4	40.35090	10.0877	Prob>F
C Total	5	110.23654		0.0581

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	15.098956	3.27546	4.61	0.0100
Reservoir Flush Rate (in days)	-2.782764	1.05725	-2.63	0.0581

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.923287
Root Mean Square Error 1.678949
Mean of Response 7.181992
Observations (or Sum Wgts) 6

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	101.77993	50.8900	18.0533
Error	3	8.45661	2.8189	Prob>F
C Total	5	110.23654		0.0212

Parameter Estimates

				
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	23.42187	3.01997	7.76	0.0045
Reservoir Flush Rate (in days)	-11.83174	2.74761	-4.31	0.0231
Reservoir Flush Rate (in days)^2	. 1.8150805	0.53961	3.36	0.0436

Fish/hr/kcfs by Flush Rate Au Sable River Sites w/o Five Channels

Summary of Fit

Rsquare 0.054656
Root Mean Square Error 1.920693
Mean of Response 5.369724
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	0.639865	0.63987	0.1734
Error	3	11.067190	3.68906	Prob>F
C Total	4	11.707056		0.7051

Parameter Estimates

 Term
 Estimate
 Std Error
 t Ratio
 Prob>|t|

 Intercept
 6.8036454
 3.54855
 1.92
 0.1510

 Reservoir Flush Rate (in days)
 -0.437171
 1.0497
 -0.42
 0.7051

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.306995
Root Mean Square Error 2.014081
Mean of Response 5.369724
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	3.594008	1,79700	0.4430
Error C Total	2	8.113047 11.707056	4.05652	Prob>F 0.6930

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	32.027323	29.7909	1.08	0.3948
Reservoir Flush Rate (in days)	-17.62204	20.1676	-0.87	0.4744
Reservoir Flush Rate (in days)^2	2.7251206	3.19335	0.85	0.4833

05749H.B02 A4-176

Fish/hr/kcfs by Flush Rate Flambeau River Sites

05749H.B02

Summary of Fit

Rsquare 0.004778
Root Mean Square Error 3.645677
Mean of Response 8.001698
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	0.191425	0.1914	0.0144
Error	3	39.872884	13.2910	Prob>F
C Total	4	40.064308		0.9121

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	8.2944108	2.93379	2.83	0.0663
Reservoir Flush Rate (in days)	-0.267073	2.22541	-0.12	0.9121

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.189229
Root Mean Square Error 4.030073
Mean of Response 8.001698
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	7.581334	3.7907	0.2334
Error	2	32.482974	16.2415	Prob>F
C Total	4	40.064308		0.8108

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	10.936333	5.08507	2.15	0.1645
Reservoir Flush Rate (in days)	-6.812948	10.0112	-0.68	0.5664
Reservoir Flush Rate (in days)^2	2.6078602	3.86614	0.67	0.5695
l l				

05749H.B02 A4-178

Fish/hr/kcfs by Flush Rate Broad River Sites

Summary of Fit

Rsquare 0.987726
Root Mean Square Error 35.23006
Mean of Response 130.4379
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean	Square	F Ratio
Model	1	299630.22		299630	241.4120
Error	3	3723.47		1241	Prob>F
C Total	4	303353.69			0.0006

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-25.02304	18.6639	-1.34	0.2725
Reservoir Flush Rate (in days)	18.871203	1.21456	15.54	0.0006

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.999964
Root Mean Square Error 2.352539
Mean of Response 130.4379
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	303342.62	151671	27405
Error	2	11.07	6	Prob>F
C Total	4	303353.69		0.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	6.5558026	1.74355	3.76	0.0640
Reservoir Flush Rate (in days)	-1.584346	0.79396	-2.00	0.1841
Reservoir Flush Rate (in days)^2	0.5798886	0.02239	25.90	0.0015

A4-180

Fish/hr/kcfs by Flush Rate Broad River Sites w/o Buzzards Roost

Summary of Fit

Rsquare 0.853277
Root Mean Square Error 1.222504
Mean of Response 7.284912
Observations (or Sum Wgts) 4

Analysis of Variance

	·			
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	17.382871	17.3829	11.6311
Error	2	2.989031	1.4945	Prob>F
C Total	3	20.371902		0.0763

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	5.1002869	0.88541	5.76	0.0288
Reservoir Flush Rate (in days)	1.2153687	0.35637	3.41	0.0763

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.892548
Root Mean Square Error 1.479526
Mean of Response 7.284912
Observations (or Sum Wgts) 4

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	18.182904	9.09145	4.1532
Error	1 .	2.188998	2.18900	Prob>F
C Total	3	20.371902		0.3278

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	4.453898	1.51376	2.94	0.2086
Reservoir Flush Rate (in days)	2.4298179	2.05463	1.18	0.4469
Reservoir Flush Rate (in days)^2	-0.248919	0.41174	-0.60	0.6538

05749H.B02 A4-182

Fish/hr by Intake Depth All Data

Summary of Fit

Rsquare 0.001253
Root Mean Square Error 407.8409
Mean of Response 86.48974
Observations (or Sum Wgts) 38

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	7510.7	7511	0.0452
Error	36	5988031.1	166334	Prob>F
C Total	37	5995541.8		0.8329

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	79.661645	73.5509	1.08	0.2860
Intake Submergence (in feet)	1.7549373	8.2587	0.21	0.8329

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.001373
Root Mean Square Error 413.6012
Mean of Response 86.48974
Observations (or Sum Wgts) 38

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	8233.0	4116	0.0241
Error	35	5987308.9	171066	Prob>F
C Total	37	5995541.8		0.9762

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	77.907664	79.324	0.98	0.3328
Intake Submergence (in feet)	3.0689217	21.8881	0.14	0.8893
Intake Submergence (in feet)^2	-0.042344	0.65167	-0.06	0.9486

Fish/hr by Intake Depth All Data w/o Buzzards Roost

Summary of Fit

Rsquare 0.333335
Root Mean Square Error 31.3756
Mean of Response 21.47054
Observations (or Sum Wgts) 37

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	17227.646	17227.6	17.5002
Error	35	34454.984	984.4	Prob>F
C Total	36	51682.630		0.0002

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	11.063597	5.72669	1.93	0.0615
Intake Submergence (in feet)	2.6583149	0.63546	4.18	0.0002

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.711115
Root Mean Square Error 20.95538
Mean of Response 21.47054
Observations (or Sum Wgts) 37

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	36752.277	18376.1	41.8469
Error	34	14930.353	439.1	Prob>F
C Total	36	51682.630		0.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	19.936096	4.04963	4.92	0.0000
Intake Submergence (in feet)	-4.185953	1.11072	-3.77	0.0006
Intake Submergence (in feet)^2	0.2206723	0.03309	6.67	0.0000

Fish/hr by Intake Depth All Data w/o Buzzards Roost and Youghiogheny

Summary of Fit

Rsquare 0.022994
Root Mean Square Error 20.21702
Mean of Response 16.1675
Observations (or Sum Wgts) 36

Analysis of Variance

Source	DF	Sum of Squares	Mean	Square	F Ratio
Model	1	327.061		327.061	0.8002
Error	34	13896.747		408.728	Prob>F
C Total	35	14223.808			0.3773

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	17.755928	3.80876	4.66	0.0000
Intake Submergence (in feet)	-0.545383	0.60968	-0.89	0.3773

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.03051
Root Mean Square Error 20.44196
Mean of Response 16.1675
Observations (or Sum Wgts) 36

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	433.975	216.987	0.5193
Error	33.	13789.833	417.874	Prob>F
C Total	35	14223.808		0.5997

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	18.402857	4.05796	4.53	0.0001
Intake Submergence (in feet)	-1.486723	1.96047	-0.76	0.4536
Intake Submergence (in feet)^2	0.0536744	0.10611	0.51	0.6163

Fish/hr by Intake Depth w/o Clupeid Sites

Summary of Fit

Rsquare 0.018031
Root Mean Square Error 20.69399
Mean of Response 16.11559
Observations (or Sum Wgts) 34

Analysis of Variance

Source	DF	Sum of Squares	Moon	Square	F Ratio
Source	DF	Sum of Squares	MAGIL	Square	r naliu
Model	1	251.628		251.628	0.5876
Error	32	13703.725		428.241	Prob>F
C Total	33	13955.353			0.4490

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	17.508391	3.98708	4.39	0.0001
Intake Submergence (in feet)	-0.483958	0.63135	-0.77	0.4490

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.021849
Root Mean Square Error 20.9842
Mean of Response 16.11559
Observations (or Sum Wgts) 34

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	304.915	152.458	0.3462
Error	31	13650.438	440.337	Prob>F
C Total	33	13955.353		0.7101

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	17.9651	4.25082	4.23	0.0002
Intake Submergence (in feet)	-1.199443	2.15409	-0.56	0.5816
Intake Submergence (in feet)^2	0.0401799	0.1155	0.35	0.7303

Fish/hr by Intake Depth w/o Clupeids, Full-flow data only

Summary of Fit

Rsquare 0.052757
Root Mean Square Error 28.84246
Mean of Response 19.76733
Observations (or Sum Wgts) 15

Analysis of Variance

Source	DF	Sum of Squares	Mean	Square	F Ratio
Model	1	602.322		602.322	0.7240
Error	13	10814.535		831.887	Prob>F
C Total	14	11416.857			0.4102

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	24.186614	9.07925	2.66	0.0195
Intake Submergence (in feet)	-0.897012	1.05418	-0.85	0.4102

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.081177
Root Mean Square Error 29.56641
Mean of Response 19.76733
Observations (or Sum Wgts) 15

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	926.789	463.394	0.5301
Error	12	10490.068	874.172	Prob>F
C Total	14	11416.857		0.6017

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	27.098765	10.4628	2.59	0.0237
Intake Submergence (in feet)	-3.397787	4.24463	-0.80	0.4390
Intake Submergence (in feet)^2	0.1268368	0.20819	0.61	0.5537

Fish/hr by Intake Depth Au Sable River Sites

A4-194

Fish/hr by Intake Depth Flambeau River Sites

Summary of Fit

Rsquare 0.00365
Root Mean Square Error 3.372437
Mean of Response 7.85
Observations (or Sum Wgts) 4

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	0.083333	0.0833	0.0073
Error	2	22.746667	11.3733	Prob>F
C Total	3	22.830000		0.9396

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	7.9333333	1.94708	4.07	0.0553
Intake Submergence (in feet)	-0.111111	1.29805	-0.09	0.9396

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.00365
Root Mean Square Error 3.372437
Mean of Response 7.85
Observations (or Sum Wgts) 4

Analysis of Variance

Source	ÐF	Sum of Squares	Mean Square	F Ratio
Model	1	0.083333	0.0833	0.0073
Error	2	22.746667	11.3733	Prob>F
C Total	3	22.830000		0.9396

Parameter Estimates

Term	•	Estimate	Std Error	t Ratio	Prob> t
intercept		7.9333333	1.94708	4.07	0.0553
Intake Submergence (in feet)	Biased	-0.111111	1.29805	-0.09	0.9396
Intake Submergence (in feet)^2	Zeroed	0	0	•	•

Fish/hr by Intake Depth Broad River Sites

Summary of Fit

Rsquare 0.59276
Root Mean Square Error 816.5416
Mean of Response 509.962
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	2911433.5	2911433	4.3667
Error	3	2000220.4	666740	Prob>F
C Total	4	4911653.9		0.1278

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	2108.9167	847.845	2.49	0.0887
Intake Submergence (in feet)	-141.8771	67.8949	-2.09	0.1278

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.89639
Root Mean Square Error 504.4279
Mean of Response 509.962
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	4402758.8	2201379	8.6516
Error	2	508895.1	254448	Prob>F
C Total	4	4911653.9		0.1036

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	3867.0128	895.375	4.32	0.0497
Intake Submergence (in feet)	-590.5255	190.006	-3.11	0.0898
Intake Submergence (in feet)^2	21.150195	8.7363	2.42	0.1365

Fish/hr by Intake Depth Broad River Sites w/o Buzzards Roost

Summary of Fit

Rsquare 0.210604
Root Mean Square Error 5.238944
Mean of Response 14.4025
Observations (or Sum Wgts) 4

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	14.644997	14.6450	0.5336
Error	2	54.893078	27.4465	Prob>F
C Total	3	69.538075		0.5411

Parameter Estimates

 Term
 Estimate
 Std Error
 t Ratio
 Prob>|t|

 Intercept
 21.039215
 9.45565
 2.23
 0.1560

 Intake Submergence (in feet)
 -0.497598
 0.68121
 -0.73
 0.5411

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.300577
Root Mean Square Error 6.97399
Mean of Response 14.4025
Observations (or Sum Wgts) 4

Analysis of Variance

Source Model	DF 2	Sum of Squares 20.901532	Mean	Square 10.4508	F Ratio 0.2149
Error C Total	1 3	48.636543 69.538075		48.6365	Prob>F 0.8363

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	34.453181	39.4613	0.87	0.5431
Intake Submergence (in feet)	-2.740348	6.31851	-0.43	0.7395
Intake Submergence (in feet)^2	0.0856294	0.23875	0.36	0.7808

05749H,B02 A4-200

Fish/hr/kcfs by Intake Depth All Data

Summary of Fit

Rsquare 0.01461
Root Mean Square Error 102.1779
Mean of Response 28.18384
Observations (or Sum Wgts) 38

Analysis of Variance

<u> </u>					
Source	DF	Sum of Squares	Mean	Square	F Ratio
Model	1	5572.78		5572.8	0.5338
Error	36	375851.39		10440.3	Prob>F
C Total	37	381424.17			0.4698

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	22.30225	18.427	1.21	0.2340
Intake Submergence (in feet)	1.511669	2.06908	0.73	0.4698

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.01939
Root Mean Square Error 103.3756
Mean of Response 28.18384
Observations (or Sum Wgts) 38

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	7396.00	3698.0	0.3460
Error	35	374028.17	10686.5	Prob>F
C Total	37	381424.17		0.7099

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	25.089036	19.8263	1.27	0.2141
Intake Submergence (in feet)	-0.576036	5.47071	-0.11	0.9167
Intake Submergence (in feet)^2	0.0672769	0.16288	0.41	0.6821

Fish/hr/kcfs by Intake Depth All Data w/o Buzzards Roost

Summary of Fit

Rsquare 0.408017 Root Mean Square Error 17.44578 Mean of Response 12.10637 Observations (or Sum Wgts) 37

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	7342.047	7342.05	24.1233
Error	35	10652.428	304.36	Prob>F
C Total	36	17994.475		0.0000

Parameter Estimates

i					i	
	Term	Estimate	Std Error	t Ratio	Prob> t	
	Intercept	5.3124772	3.18421	1.67	0.1042	
	Intake Submergence (in feet)	1.7354098	0.35333	4.91	0.0000	

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.800862
Root Mean Square Error 10.26615
Mean of Response 12.10637
Observations (or Sum Wgts) 37

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	14411.083	7205.54	68.3677
Error	34	3583.392	105.39	Prob>F
C Total	36	17994.475		0.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	10.651166	1.98393	5.37	0.0000
Intake Submergence (in feet)	-2.382869	0.54415	-4.38	0.0001
Intake Submergence (in feet)^2	0.1327812	0.01621	8.19	0.0000

Fish/hr/kcfs by Intake Depth All Data w/o Buzzards Roost and Youghiogheny

Summary of Fit

Rsquare 0.0177
Root Mean Square Error 9.369235
Mean of Response 8.755507
Observations (or Sum Wgts) 36

Analysis of Variance

Source	DF	Sum of Squares	Mean	Square	F Ratio
Model	1	53.7806		53.7806	0.6127
Error	34	2984.6071		87.7826	Prob>F
C Total	35	3038.3877			0.4392

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	9.3996258	1.76511	5.33	0.0000
Intake Submergence (in feet)	-0.221157	0.28255	-0.78	0.4392

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.01926
Root Mean Square Error 9.50258
Mean of Response 8.755507
Observations (or Sum Wgts) 36

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	58.5197	29.2599	0.3240
Error	33	2979.8679	90.2990	Prob>F
C Total	35	3038.3877		0.7255

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	9.5358302	1.88637	5.06	0.0000
Intake Submergence (in feet)	-0.419346	0.91134	-0.46	0.6484
Intake Submergence (in feet)^2	0.0113006	0.04933	0.23	0.8202

Fish/hr/kcfs by Intake Depth w/o Clupeid Sites

Summary of Fit

Rsquare 0.011365
Root Mean Square Error 9.498274
Mean of Response 8.78704
Observations (or Sum Wgts) 34

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	33.1877	33.1877	0.3679
Error	32	2886.9507	90.2172	Prob>F
C Total	33	2920.1384		0.5484

Parameter Estimates

 Term
 Estimate
 Std Error
 t Ratio
 Prob>|t|

 Intercept
 9.2928635
 1.83002
 5.08
 0.0000

 Intake Submergence (in feet)
 -0.175759
 0.28978
 -0.61
 0.5484

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.011524
Root Mean Square Error 9.649481
Mean of Response 8.78704
Observations (or Sum Wgts) 34

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	33.6517	16.8258	0.1807
Error	31	2886.4867	93.1125	Prob>F
C Total	33	2920.1384		0.8356

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	9.2502483	1.95472	4.73	0.0000
Intake Submergence (in feet)	-0.108997	0.99055	-0.11	0.9131
Intake Submergence (in feet)^2	-0.003749	0.05311	-0.07	0.9442

Fish/hr/kcfs by Intake Depth w/o Clupeids, Full-flow data only

05749I.B02

Summary of Fit

Rsquare 0.019702
Root Mean Square Error 11.46082
Mean of Response 8.735842
Observations (or Sum Wgts) 15

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	34.3192	34.319	0.2613
Error	13	1707.5556	131.350	Prob>F
C Total	14	1741.8748		0.6178

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	9.790728	3.60772	2.71	0.0177
Intake Submergence (in feet)	-0.214118	0.41889	-0.51	0.6178

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.021328
Root Mean Square Error 11.91891
Mean of Response 8.735842
Observations (or Sum Wgts) 15

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	37.1506	18.575	0.1308
Error	12	1704.7242	142.060	Prob>F
C Total	14	1741.8748		0.8787

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	9.5186909	4.21782	2.26	0.0435
Intake Submergence (in feet)	0.0194908	1.71111	0.01	0.9911
Intake Submergence (in feet)^2	-0.011848	0.08393	-0.14	0.8901
l .				j

Fish/hr/kcfs by Intake Depth Au Sable River Sites

Fish/hr/kcfs by Intake Depth Flambeau River Sites

05749I.B02

Summary of Fit

Rsquare 0.605643
Root Mean Square Error 2.383075
Mean of Response 8.752123
Observations (or Sum Wgts) 4

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	17.443469	17.4435	3.0715
Error	2	11.358097	5.6790	Prob>F
C Total	3	28.801566		0.2218

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	9.9577857	1.37587	7.24	0.0186
Intake Submergence (in feet)	-1.60755	0.91725	-1.75	0.2218

A4-214

Fish/hr/kcfs by Intake Depth Broad River Sites

Summary of Fit

Rsquare 0.586307
Root Mean Square Error 204.5282
Mean of Response 130.4379
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	177858.32	177858	4.2518
Error	3	125495.36	41832	Prob>F
C Total	4	303353.69		0.1312

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	525.64054	212.369	2.48	0.0897
Intake Submergence (in feet)	-35.06678	17.0064	-2.06	0.1312

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.891644
Root Mean Square Error 128.1997
Mean of Response 130.4379
Observations (or Sum Wgts) 5

Analysis of Variance

				
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	270483.36	135242	8.2288
Error	·2	32870.33	16435	Prob>F
C Total	4	303353.69		0.1084

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob>it
Intercept	963.78832	227.558	4.24	0.0515
Intake Submergence (in feet)	-146.8777	48.2897	-3.04	0.0932
Intake Submergence (in feet)^2	5.2709922	2.22032	2.37	0.1409

Fish/hr/kcfs by Intake Depth Broad River Sites w/o Buzzards Roost

Summary of Fit

Rsquare 0.344983
Root Mean Square Error 2.583015
Mean of Response 7.284912
Observations (or Sum Wgts) 4

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
I .	וט	•	•	
Model	1	7.027970	7.0279	7 1.0534
Error	2	13.343932	6.6719	7 Prob>F
C Total	3	20.371902		0.4126

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	2.6873936	4.66202	0.58	0.6225
Intake Submergence (in feet)	0.3447062	0.33586	1.03	0.4126

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.627843
Root Mean Square Error 2.753462
Mean of Response 7.284912
Observations (or Sum Wgts) 4

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	12.790350	6.39517	0.8435
Error C Total	1 3	7.581552 20.371902	7.58155	Prob>F 0.6100

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-10.18595	15.5801	-0.65	0.6314
Intake Submergence (in feet)	2.4970656	2.49466	1.00	0.4997
Intake Submergence (in feet)^2	-0.082178	0.09426	-0.87	0.5435

Fish/hr by Trash Rack Spacing All Data

Summary of Fit

Rsquare 0.506738
Root Mean Square Error 27.04625
Mean of Response 21.79892
Observations (or Sum Wgts) 37

Analysis of Variance

				1
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	26301.947	26301.9	35.9562
Error	35	25602.486	731.5	Prob>F
C Total	36	51904.434		0.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-23.84583	8.81556	-2.70	0.0105
Trash Rack Spacing (in inches)	17.011035	2.8369	6.00	0.0000

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.704672
Root Mean Square Error 21.23318
Mean of Response 21.79892
Observations (or Sum Wgts) 37

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	36575.611	18287.8	40.5632
Error	34	15328.823	450.8	Prob>F
C Total	36 .	51904.434		0.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	31.778041	13.5527	2.34	0.0250
Trash Rack Spacing (in inches)	-15.64664	7.19468	-2.17	0.0367
Trash Rack Spacing (in inches)^2	3.3143641	0.69431	4.77	0.0000

Fish/hr by Trash Rack Spacing All Data w/o Youghiogheny

Summary of Fit

Rsquare 0.024425
Root Mean Square Error 20.44964
Mean of Response 16.505
Observations (or Sum Wgts) 36

Analysis of Variance

Source	DF	Sum of Squares	Mean	Square	F Ratio
Model	1	355.978		355.978	0.8512
Error	34	14218.386		418.188	Prob>F
C Total	35	14574.364			0.3627

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	8.6923759	9.12798	0.95	0.3477
Trash Rack Spacing (in inches)	3.1502517	3.41444	0.92	0.3627

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.026245
Root Mean Square Error 20.7378
Mean of Response 16.505
Observations (or Sum Wgts) 36

Analysis of Variance

DF	Sum of Squares		•	F Ratio
_				0.4447 Prob> F
			430.037	0.6448
	DF 2 33 35	2 382.498 33 14191.866	2 382.498 33 14191.866	2 382.498 191.249 33 14191.866 430.057

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	3.8185207	21.7002	0.18	0.8614
Trash Rack Spacing (in inches)	6.9158273	15.5541	0.44	0.6595
Trash Rack Spacing (in inches)^2	-0.624724	2.51574	-0.25	0.8054

Fish/hr by Trash Rack Spacing w/o Clupeid Sites

Summary of Fit

Rsquare 0.006971
Root Mean Square Error 21.50386
Mean of Response 15.92875
Observations (or Sum Wgts) 32

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	97.380	97.380	0.2106
Error	30	13872.479	462.416	Prob>F
C Total	31	13969.859		0.6496

Parameter Estimates

Term	Estimate	Std Error	t Potio	Prob> t
Term	Estimate	Sta Elloi	t Ratio	Prob>(t)
Intercept	11.193333	10.997	1.02	0.3169
Trash Rack Spacing (in inches)	2.0250347	4.4128	0.46	0.6496

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.032571
Root Mean Square Error 21.58771
Mean of Response 15.92875
Observations (or Sum Wgts) 32

Analysis of Variance

Source	DF	Sum of Squares	Mean	Square	F Ratio
Model	2	455.013		227.507	0.4882
Error	29	13514.846		466.029	Prob>F
C Total	31	13969.859			0.6187

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-10.1032	26.6999	-0.38	0.7079
Trash Rack Spacing (in inches)	19.754849	20.7183	0.95	0.3482
Trash Rack Spacing (in inches)^2	-3.246748	3.70626	-0.88	0.3882

Fish/hr by Trash Rack Spacing w/o Clupeids, Full-flow data only

Summary of Fit

Rsquare 0.298578
Root Mean Square Error 25.95686
Mean of Response 19.48643
Observations (or Sum Wgts) 14

Analysis of Variance

Source	DF	Sum of Se	quares	Mean	Square	F Ratio
Model	1	34	41.623		3441.62	5.1081
Error	12	80	85.103		673.76	Prob>F
C Total	13	115	26.726			0.0432

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-32.80472	24.1542	-1.36	0.1994
Trash Rack Spacing (in inches)	25.200552	11.1501	2.26	0.0432

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.388493
Root Mean Square Error 25.3138
Mean of Response 19.48643
Observations (or Sum Wgts) 14

Analysis of Variance

Source Model Error C Total	DF 2 11 13 -	Sum	of Squares 4478.056 7048.670 11526.726	Mean	Square 2239.03 640.79	F Ratio 3.4942 Prob>F 0.0669
-------------------------------------	---------------------	-----	---	------	------------------------------	------------------------------

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	68.052775	82.7284	0.82	0.4282
Trash Rack Spacing (in inches)	-69.85098	75.5256	-0.92	0.3749
Trash Rack Spacing (in inches)^2	20.53702	16.1482	1.27	0.2297

05749J,B02 A4-226

Fish/hr by Trash Rack Spacing w/o Clupeids, Full-flow data only w/o Centralia

Summary of Fit

Rsquare 0.023998
Root Mean Square Error 21.79397
Mean of Response 13.66231
Observations (or Sum Wgts) 13

Analysis of Variance

Source Model	DF	Sum of Squares 128,4677	Mean Square	F Ratio 0.2705
Error	11	5224.7487	474.977	Prob>F
C Total	12	5353.2164		0.6133

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	1.2721411	24.5789	0.05	0.9596
Trash Rack Spacing (in inches)	6.3041943	12.1218	0.52	0.6133

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.106705
Root Mean Square Error 21.86779
Mean of Response 13.66231
Observations (or Sum Wgts) 13

Analysis of Variance

				1
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	571.2129	285.606	0.5973
Error	10	4782.0036	478.200	Prob>F
C Total	12	5353.2164		0.5688

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-95.69835	103.752	-0.92	0.3781
Trash Rack Spacing (in inches)	105.27164	103.57	1.02	0.3334
Trash Rack Spacing (in inches)^2	-23.72401	24.6556	-0.96	0.3586

Fish/hr by Trash Rack Spacing Au Sable River Sites

Summary of Fit

Rsquare 0.448807 Root Mean Square Error 11.51078 Mean of Response 22.39167 Observations (or Sum Wgts) 6

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	431.54462	431.545	3.2570
Error	4	529.99187	132.498	Prob>F
C Total	5	961.53648		0.1454

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	54.167964	18.2237	2.97	0.0410
Trash Rack Spacing (in inches)	-13.50268	7.48189	-1.80	0.1454

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.492722
Root Mean Square Error 12.75103
Mean of Response 22.39167
Observations (or Sum Wgts) 6

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	473.77005	236.885	1.4570
Error	3	487.76643	162.589	Prob>F
C Total	5	961.53648		0.3613

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-85.48924	274.787	-0.31	0.7761
Trash Rack Spacing (in inches)	113.51248	249.376	0.46	0.6799
Trash Rack Spacing (in inches)^2	-26.84321	52.6736	-0.51	0.6454

Fish/hr by Trash Rack Spacing Flambeau River Sites

Summary of Fit

Rsquare 0.928818
Root Mean Square Error 0.745258
Mean of Response 7.68
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	21.741773	21.7418	39.1455
Error	3	1.666227	0.5554	Prob>F
C Total	. 4	23.408000		0.0082

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	0.9981668	1.11876	0.89	0.4380
Trash Rack Spacing (in inches)	3.0193553	0.48258	6.26	0.0082

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.953831
Root Mean Square Error 0.735095
Mean of Response 7.68
Observations (or Sum Wgts) 5

Analysis of Variance

Source Model	DF 2	Sum of Squares 22.327272	Mean Square	F Ratio 20.6595
Error	2	1.080728	0.5404	Prob>F
C Total	4	23.408000		0.0462

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	8.1555076	6.96392	1.17	0.3622
Trash Rack Spacing (in inches)	-3.07114	5.87037	-0.52	0.6530
Trash Rack Spacing (in inches)^2	1.1761296	1.12989	1.04	0.4072

Fish/hr by Trash Rack Spacing Flambeau River Sites w/o Lower

Summary of Fit

Rsquare 0.476406
Root Mean Square Error 0.757189
Mean of Response 6.65
Observations (or Sum Wgts) 4

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	1.0433302	1.04333	1.8198
Error	2	1.1466698	0.57333	Prob>F
C Total	3	2.1900000		0.3098

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	3.2048701	2.58178	1.24	0.3403
Trash Rack Spacing (in inches)	1.8216153	1.35036	1.35	0.3098

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.853881
Root Mean Square Error 0.565685
Mean of Response 6.65
Observations (or Sum Wgts) 4

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	1.8700000	0.935000	2.9219
Error	1,	0.3200000	0.320000	Prob>F
C Total	3	2.1900000		0.3823

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	118.17815	71.5589	1.65	0.3466
Trash Rack Spacing (in inches)	-113.221	71.5832	-1.58	0.3589
Trash Rack Spacing (in inches)^2	28.068127	17.4631	1.61	0.3543

Fish/hr/kcfs by Trash Rack Spacing All Data

Summary of Fit

Rsquare 0.518665
Root Mean Square Error 16.0945
Mean of Response 13.09167
Observations (or Sum Wgts) 36

Analysis of Variance

Source Model	DF 1	Sum of	Squares 9490,162	Mean	Square 9490.16	F Ratio 36.6369
Error	34		8807.123		259.03	Prob>F
C Total	35	•	18297.286			0.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-14.59329	5.30243	-2.75	0.0094
Trash Rack Spacing (in inches)	10.245258	1.69264	6.05	0.0000

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.783767
Root Mean Square Error 10.94956
Mean of Response 13.09167
Observations (or Sum Wgts) 36

Analysis of Variance

<u></u>				
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	14340.817	7170.41	59.8067
Error	33	3956.468	119.89	Prob>F
C Total	35 .	18297.286		0.0000

Parameter Estimates

				
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	23.771443	7.02801	3.38	0.0019
Trash Rack Spacing (in inches)	-12.22815	3.7161	-3.29	0.0024
Trash Rack Spacing (in inches)^2	2.2788495	0.35827	6.36	0.0000

Fish/hr/kcfs by Trash Rack Spacing All Data w/o Youghiogheny

Summary of Fit

Rsquare 0.006247 Root Mean Square Error 10.37309 Mean of Response 9.673216 Observations (or Sum Wgts) 35

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	22.3210	22.321	0.2074
Error	33	3550.8360	107.601	Prob>F
C Total	34	3573.1570		0.6518

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	7.6995398	4.67468	1.65	0.1090
Trash Rack Spacing (in inches)	0.7914606	1.73773	0.46	0.6518

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.006357
Root Mean Square Error 10.53334
Mean of Response 9.673216
Observations (or Sum Wgts) 35

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	22.7156	11.358	0.1024
Error	32	3550.4414	110.951	Prob>F
C Total	34	3573.1570		0.9030

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	7.1059089	11.0275	0.64	0.5239
Trash Rack Spacing (in inches)	1.2507791	7.90101	0.16	0.8752
Trash Rack Spacing (in inches)^2	-0.076247	1.27845	-0.06	0.9528

Fish/hr/kcfs by Trash Rack Spacing w/o Clupeid Sites

Summary of Fit

Rsquare 0.00083
Root Mean Square Error 10.66414
Mean of Response 9.575456
Observations (or Sum Wgts) 32

Analysis of Variance

Source Model	DF	Sum of Squares 2.8356	Mean Square	F Ratio 0.0249
Error	30	3411.7161	113.724	Prob>F
C Total	31	3414.5517		0.8756

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	8.7673925	5.45359	1.61	0.1184
Trash Rack Spacing (in inches)	0.3455571	2.18838	0.16	0.8756

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.0128
Root Mean Square Error 10.78128
Mean of Response 9.575456
Observations (or Sum Wgts) 32

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	43.7068	21,853	0.1880
Error	29	3370.8449	116.236	Prob>F
C Total	31	3414.5517		0.8296

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	1.5679543	13.3344	0.12	0.9072
Trash Rack Spacing (in inches)	6.3392413	10.3471	0.61	0.5449
Trash Rack Spacing (in inches)^2	-1.097585	1.85097	-0.59	0.5578

Fish/hr/kcfs by Trash Rack Spacing w/o Clupeids, Full-flow data only

Summary of Fit

Rsquare 0.099129
Root Mean Square Error 11.46485
Mean of Response 8.672903
Observations (or Sum Wgts) 14

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	173.5634	173.563	1.3204
Error	12	1577.3139	131.443	Prob>F
C Total	13	1750.8773		0.2729

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-3.070003	10.6686	-0.29	0.7784
Trash Rack Spacing (in inches)	5.6592321	4.92489	1.15	0.2729

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.101309
Root Mean Square Error 11.96015
Mean of Response 8.672903
Observations (or Sum Wgts) 14

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	177.3794	88.690	0.6200
Error	11	1573.4979	143.045	Prob>F
C Total	13	1750.8773		0.5557

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	3.0498225	39.0872	0.08	0.9392
Trash Rack Spacing (in inches)	-0.1083	35.684	-0.00	0.9976
Trash Rack Spacing (in inches)^2	1.2461443	7.62963	0.16	0.8732

Fish/hr/kcfs by Trash Rack Spacing Au Sable River Sites

Summary of Fit

Rsquare 0.471167
Root Mean Square Error 3.817613
Mean of Response 7.181992
Observations (or Sum Wgts) 6

Analysis of Variance

Source	DF	Sum of	Squares	Mean	Square	F Ratio
Model	1		51.93985		51.9399	3.5638
Error	4		58.29668		14.5742	Prob>F
C Total	5	•	110.23654			0.1321

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	18.206033	6.04399	3.01	0.0395
Trash Rack Spacing (in inches)	-4.684436	2.48141	-1.89	0.1321

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.485039
Root Mean Square Error 4.350001
Mean of Response 7.181992
Observations (or Sum Wgts) 6

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	53.46902	26.7345	1.4128
Error	3	56.76752	18.9225	Prob>F
C Total	5 .	110.23654		0.3695

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-8.370853	93.7434	-0.09	0.9345
Trash Rack Spacing (in inches)	19.486655	85.0742	0.23	0.8336
Trash Rack Spacing (in inches)^2	-5.108285	17.9695	-0.28	0.7947

Fish/hr/kcfs by Trash Rack Spacing Flambeau River Sites

Summary of Fit

Rsquare 0.45449
Root Mean Square Error 2.699104
Mean of Response 8.001698
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	18.208816	18.2088	2.4994
Error	3	21.855493	7.2852	Prob>F
C Total	4	40.064308		0.2120

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	1.8868035	4.05181	0.47	0.6732
Trash Rack Spacing (in inches)	2.7631699	1.74778	1.58	0.2120

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.729936
Root Mean Square Error 2.325931
Mean of Response 8.001698
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean	Square	F Ratio
Model	2	29.244399		14.6222	2.7028
Error	2	10.819909		5.4100	Prob>F
C Total	4.	40.064308			0.2701

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	32.960033	22.0347	1.50	0.2733
Trash Rack Spacing (in inches)	-23.67841	18.5746	-1.27	0.3305
Trash Rack Spacing (in inches)^2	5.1061065	3.57511	1.43	0.2894

Fish/hr by Intake Velocity All Data

Summary of Fit

Rsquare 0.021104
Root Mean Square Error 41.82572
Mean of Response 24.296
Observations (or Sum Wgts) 30

Analysis of Variance

Source	DF	Sum of Squares	Mean	Square	F Ratio
Model	1	1056.015		1056.01	0.6036
Error	28	48982.935		1749.39	Prob>F
C Total	29	50038.950			0.4437

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	32.408908	12.9363	2.51	0.0183
Average Velocity (in fps)	-3.575018	4.60136	-0.78	0.4437

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.033126
Root Mean Square Error 42.33086
Mean of Response 24.296
Observations (or Sum Wgts) 30

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	1657.593	828.80	0.4625
Error	27	48381.356	1791.90	Prob>F
C Total	29	50038.950		0.6346

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	46.485611	27.598	1.68	0.1036
Average Velocity (in fps)	-14.83213	19.9788	-0.74	0.4643
Average Velocity (in fps)^2	1.4510841	2.5044	0.58	0.5671

Fish/hr by Intake Velocity w/o Clupeid Sites

Summary of Fit

Rsquare 0.000156
Root Mean Square Error 23.4245
Mean of Response 17.94615
Observations (or Sum Wgts) 26

Analysis of Variance

Source	DF	Sum of Squares	Mean	Square	F Ratio
Model	1	2.054		2.054	0.0037
Error	24	13168.974		548.707	Prob>F
C Total	25	13171.028			0.9517

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	17.553605	7.89065	2.22	0.0358
Average Velocity (in fps)	0.1624942	2.65566	0.06	0.9517

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.085718
Root Mean Square Error 22.88158
Mean of Response 17.94615
Observations (or Sum Wgts) 26

Analysis of Variance

Source	DF	Sum of Squares	Mean	Square	F Ratio
Model	2	1128.997		564.498	1.0782
Error	23	12042.031		523.567	Prob>F
C Total	25	13171.028			0.3568

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-3.790357	16.4639	-0.23	0.8200
Average Velocity (in fps)	16.640451	11.5272	1.44	0.1623
Average Velocity (in fps)^2	-2.091328	1.42547	-1.47	0.1559

Fish/hr by Intake Velocity w/o Clupeids, Full-flow data only

Summary of Fit

Rsquare 0.00679
Root Mean Square Error 31.84668
Mean of Response 20.89462
Observations (or Sum Wgts) 13

Analysis of Variance

Source	DF	Sum of Squares	Mean	Square	F Ratio
Model	1	76.267		76.27	0.0752
Error	11	11156.323		1014.21	Prob>F
C Total	12	11232.590			0.7890

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	17.337944	15.6919	1.10	0.2928
Average Velocity (in fps)	1.5335563	5.59236	0.27	0.7890

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.16552
Root Mean Square Error 30.61597
Mean of Response 20.89462
Observations (or Sum Wgts) 13

Analysis of Variance

Source	DF	Sum of Squares	Mean	Square	F Ratio
Model	2.	1859.216		929.608	0.9918
Error	10	9373.374		937.337	Prob>F
C Total	12	11232.590			0.4047

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-21.91053	32.209	-0.68	0.5118
Average Velocity (in fps)	30.950624	21.9965	1.41	0.1897
Average Velocity (in fps)^2	-3.680306	2.66847	-1.38	0.1979

05749K.B02 A4-252

Fish/hr by Intake Velocity Au Sable River Sites

Summary of Fit

Rsquare 0.577082
Root Mean Square Error 10.08279
Mean of Response 22.39167
Observations (or Sum Wgts) 6

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	554.88583	554.886	5.4581
Error	4	406.65065	101.663	Prob>F
C Total	5	961.53648		0.0797

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	75.02104	22.9002	3.28	0.0306
Average Velocity (in fps)	-28.70693	12.2876	-2.34	0.0797

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.681162
Root Mean Square Error 10.10898
Mean of Response 22.39167
Observations (or Sum Wgts) 6

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	654.96211	327.481	3.2046
Error	3	306.57437	102.191	Prob>F
C Total	5	961.53648		0.1800

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	249.46916	177.771	1.40	0.2551
Average Velocity (in fps)	-223.0566	196.779	-1.13	0.3394
Average Velocity (in fps)^2	52.358801	52.9092	0.99	0.3953

05749K.B02 A4-254

Fish/hr by Intake Velocity Flambeau River Sites

05749K.B02 A4-255

Fish/hr by Intake Velocity Broad River Sites

Summary of Fit

Rsquare 0.810625
Root Mean Square Error 3.174909
Mean of Response 13.23667
Observations (or Sum Wgts) 3

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	43.148017	43.1480	4.2805
Error	1	10.080050	10.0800	Prob>F
C Total	2	53.228067		0.2866

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	51.929286	18.7912	2.76	0.2210
Average Velocity (in fps)	-5.746429	2.77747	-2.07	0.2866

Fish/hr/kcfs by Intake Velocity All Data

A4-259

Summary of Fit

Rsquare 0.039142
Root Mean Square Error 25.01312
Mean of Response 13.64326
Observations (or Sum Wgts) 29

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	688.151	688.151	1.0999
Error	27	16892.711	625.656	Prob>F
C Total	28	17580.862		0.3036

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	20.296935	7.8629	2.58	0.0156
Average Velocity (in fps)	-2.897247	2.76256	-1.05	0.3036

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.119785
Root Mean Square Error 24.39651
Mean of Response 13.64326
Observations (or Sum Wgts) 29

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	2105.929	1052.96	1.7691
Error	26	15474.932	595.19	Prob>F
C Total	28	17580.862		0.1904

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	41.966145	15.998	2.62	0.0144
Average Velocity (in fps)	-20.19329	11.5259	-1.75	0.0916
Average Velocity (in fps)^2	2.2283518	1.4438	1.54	0.1348

Fish/hr/kcfs by Intake Velocity w/o Clupeid Sites

Summary of Fit

Rsquare 0.006954
Root Mean Square Error 10.70634
Mean of Response 9.479925
Observations (or Sum Wgts) 26

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	19.2647	19.265	0.1681
Error	24	2751.0151	114.626	Prob>F
C Total	25	2770.2798		0.6855

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	10.682022	3.60648	2.96	0.0068
Average Velocity (in fps)	-0.497605	1.21379	-0.41	0.6855

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.008543
Root Mean Square Error 10.92785
Mean of Response 9.479925
Observations (or Sum Wgts) 26

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	23.6670	11.833	0.0991
Error	23	2746.6128	119.418	Prob>F
C Total	25	2770.2798		0.9060

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	12.016042	7.86289	1.53	0.1401
Average Velocity (in fps)	-1.527494	5.5052	-0.28	0.7839
Average Velocity (in fps)^2	0.1307102	0.68078	0.19	0.8494

Fish/hr/kcfs by Intake Velocity w/o Clupeids, Full-flow data only

Summary of Fit

Rsquare 0.000037
Root Mean Square Error 12.41937
Mean of Response 9.352114
Observations (or Sum Wgts) 13

Analysis of Variance

Source	DF	Sum of Squares	Mean	Square	F Ratio
Model	1	0.0623		0.062	0.0004
Error	11	1696.6490		154.241	Prob>F
C Total	12	1696.7113			0.9843

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	9.2504601	6.11944	1.51	0.1588
Average Velocity (in fps)	0.0438311	2.18088	0.02	0.9843

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.023468
Root Mean Square Error 12.87203
Mean of Response 9.352114
Observations (or Sum Wgts) 13

Analysis of Variance

Source Model	DF 2	Sum of Squares 39.8192	Mean Square 19.910	F Ratio 0.1202
Error	10	1656.8921	165.689	Prob>F
C Total	12	1696.7113		0.8880

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	3.3896207	13.5418	0.25	0.8074
Average Velocity (in fps)	4.43658	9.2481	0.48	0.6417
Average Velocity (in fps)^2	-0.549567	1.12192	-0.49	0.6348

Fish/hr/kcfs by Intake Velocity Au Sable River Sites

Summary of Fit

Rsquare 0.571821
Root Mean Square Error 3.435147
Mean of Response 7.181992
Observations (or Sum Wgts) 6

Analysis of Variance

Source	DF	Sum o	f Squares	Mean	Square	F Ratio
Model	1		63.03559		63.0356	5.3419
Error	4		47.20094		11.8002	Prob>F
C Total	5		110.23654			0.0819

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	24.920591	7.80196	3.19	0.0331
Average Velocity (in fps)	-9.675599	4.1863	-2.31	0.0819

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.813444
Root Mean Square Error 2.618227
Mean of Response 7.181992
Observations (or Sum Wgts) 6

Analysis of Variance

Source Model	DF	Sum of	Squares Me 39.67120	ean	Square 44.8356	F Ratio 6,5405
Error C Total	3	2	20.56533 10.23654		6.8551	Prob>F 0.0806

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	114.91842	46.0427	2.50	0.0880
Average Velocity (in fps)	-109.9406	50.9657	-2.16	0.1199
Average Velocity (in fps)^2	27.011919	13.7035	1.97	0.1433

Entrainment Rate (fish/hr)/kcfs By Average Velocity (in fps)

Fish/hr/kcfs by Intake Velocity Flambeau River Sites

Fish/hr/kcfs by Intake Velocity Broad River Sites

Summary of Fit

Rsquare 0.850473
Root Mean Square Error 1.723353
Mean of Response 7.490994
Observations (or Sum Wgts) 3

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	16.892319	16.8923	5.6878
Error	1	2.969946	2.9699	Prob>F
C Total	2	19.862265		0.2528

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-16.71887	10.2	-1.64	0.3487
Average Velocity (in fps)	3.5955244	1.50762	2.38	0.2528

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.850473
Root Mean Square Error 1.723353
Mean of Response 7.490994
Observations (or Sum Wgts) 3

Analysis of Variance

				
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	16.892319	16.8923	5.6878
Error	1	2.969946	2.9699	Prob>F
C Total	2	19.862265		0.2528

Parameter Estimates

Term		Estimate	Std Error	t Ratio	Prob> t
Intercept	Biased	-16.71887	10.2	-1.64	0.3487
Average Velocity (in fps)	Biased	3.5955244	1.50762	2.38	0.2528
Average Velocity (in fps)^2	Zeroed	0	. 0	•	• }

Fish/hr by Usable Storage All Data

Summary of Fit

Rsquare 0.998185
Root Mean Square Error 26.45811
Mean of Response 159.3347
Observations (or Sum Wgts) 17

Analysis of Variance

Source	DF	Sum of Squares 5773805.9	Mean Square	F Ratio
Model	1		5773806	8247.924
Error	15	10500.5	700	Prob>F
C Total	16	5784306.4		0.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
intercept	-6.177851	6.67081	-0.93	0.3691
Usable Storage (in ac-ft)	0.0143409	0.00016	90.82	0.0000

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.999699
Root Mean Square Error 11.15607
Mean of Response 159.3347
Observations (or Sum Wgts) 17

Analysis of Variance

Source	DF	Sum of Squares 5782564.0	Mean Square	F Ratio
Model	2		2891282	23231.02
Error	14	1742.4	124	Prob>F
C Total	16	5784306.4		0.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	16.876799	3.93253	4.29	0.0007
Usable Storage (in ac-ft)	-0.002686	0.00203	-1.32	0.2071
Usable Storage (in ac-ft)^2	9.7e-8	0	8.39	0.0000

Fish/hr by Usable Storage All Data w/o Buzzards Roost

Summary of Fit

Rsquare 0.081286
Root Mean Square Error 11.17969
Mean of Response 13.53063
Observations (or Sum Wgts) 16

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	154.8180	154.818	1,2387
Error	14	1749.7971	124.986	Prob>F
C Total	15	1904.6151		0.2845

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	16.585619	3.91742	4.23	0.0008
Usable Storage (in ac-ft)	-0.002202	0.00198	-1.11	0.2845

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.094825
Root Mean Square Error 11.51591
Mean of Response 13.53063
Observations (or Sum Wgts) 16

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	180.6054	90.303	0.6809
Error	13	1724.0097	132.616	Prob>F
C Total	15	1904.6151		0.5233

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	18.403602	5.76888	3.19	0.0071
Usable Storage (in ac-ft)	-0.00528	0.00727	-0.73	0.4807
Usable Storage (in ac-ft)^2	0.0000006	0	0.44	0.6665

Fish/hr by Usable Storage w/o Clupeid Sites

Summary of Fit

Rsquare 0.087959
Root Mean Square Error 11.34883
Mean of Response 14.066
Observations (or Sum Wgts) 15

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	161.4775	161.477	1.2537
Error	13	1674.3473	128.796	Prob>F
C Total	14	1835.8248		0.2831

Parameter Estimates

 Term
 Estimate
 Std Error
 t Ratio
 Prob>|t|

 Intercept
 17.213114
 4.06032
 4.24
 0.0010

 Usable Storage (in ac-ft)
 -0.00225
 0.00201
 -1.12
 0.2831

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.094175
Root Mean Square Error 11.77191
Mean of Response 14.066
Observations (or Sum Wgts) 15

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	172.8891	86.445	0.6238
Error	12	1662.9356	138.578	Prob>F
C Total	14	1835.8248		0.5524

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	18.397613	5.89713	3.12	0.0089
Usable Storage (in ac-ft)	-0.004338	0.00757	-0.57	0.5772
Usable Storage (in ac-ft)^2	0.0000004	0	0.29	0.7790

Fish/hr by Usable Storage w/o Clupeids, Full-flow data only

Summary of Fit

Rsquare 0.078622
Root Mean Square Error 5.485196
Mean of Response 10.744
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	7.702199	7.7022	0.2560
Error	3	90.262121	30.0874	Prob>F
C Total	4	97.964320		0.6477

Parameter Estimates

ı					1
	Term	Estimate	Std Error	t Ratio	Prob> t
	Intercept	9.798514	3.08375	3.18	0.0502
	Usable Storage (in ac-ft)	0.0007611	0.0015	0.51	0.6477

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.079172
Root Mean Square Error 6.715963
Mean of Response 10.744
Observations (or Sum Wgts) 5

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	7.755992	3.8780	0.0860
Error	2	90.208328	45.1042	Prob>F
C Total	4	97.964320		0.9208

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob>[t]
Intercept	10.438253	18.9055	0.55	0.6363
Usable Storage (in ac-ft)	-0.000889	0.04782	-0.02	0.9869
Usable Storage (in ac-ft)^2	0.0000003	0	0.03	0.9756

Fish/hr by River Flow All Data

Summary of Fit

Rsquare 0.001313
Root Mean Square Error 387.6012
Mean of Response 79.18905
Observations (or Sum Wgts) 42

Analysis of Variance

Source	DF	Sum	of Sq	uares	Mean	Square	F	Ratio
Model	1		7	900.5		7901	(0.0526
Error	40		6009	387.9		150235	P	rob>F
C Total	41		6017	288.4			(0.8198

Parameter Estimates

 Term
 Estimate
 Std
 Error
 t
 Ratio
 Prob>|t|

 Intercept
 93.98642
 87.9815
 1.07
 0.2918

 A5 AVG RIVER FLOW CFS
 -0.007758
 0.03383
 -0.23
 0.8198

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.003158
Root Mean Square Error 392.1762
Mean of Response 79.18905
Observations (or Sum Wgts) 42

Analysis of Variance

Source	DF	Sum	of	Squares	Mean	Square	F	Ratio
Model	2			19002.7		9501	(0.0618
Error	39		5	998285.7		153802	P	rob>F
C Total	41		6	017288.4			(0.9402

Parameter Estimates

Term	Estimate	Std Error t	Ratio	Prob> t
Intercept	70.049137	125.946	0.56	0.5813
A5 AVG RIVER FLOW CFS	0.0159459	0.09463	0.17	0.8671
A5 AVG RIVER FLOW CFS^2	-0.000003	0.00001	-0.27	0.7896

H19 ANN ENT RATE FISH/HR By A5 AVG RIVER FLOW CFS

Fish/hr by River Flow All Data w/o Buzzards Roost

Summary of Fit

Rsquare 0.008924
Root Mean Square Error 36.57852
Mean of Response 20.33512
Observations (or Sum Wgts) 41

Analysis of Variance

Source Model	DF 1	Sum	of Squares 469.865	Mean	Square 469.87	F Ratio 0.3512
Error	39		52181.535		1337.99	Prob>F
C Total	40		52651.401			0.5569

Parameter Estimates

 Term
 Estimate
 Std
 Error
 t
 Ratio
 Prob>|t|

 Intercept
 16.699117
 8.38335
 1.99
 0.0534

 A5 AVG RIVER FLOW CFS
 0.0018939
 0.0032
 0.59
 0.5569

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.031895
Root Mean Square Error 36.62473
Mean of Response 20.33512
Observations (or Sum Wgts) 41

Analysis of Variance

Source	DF	Sum of Squares	•	F Ratio
Model	2	1679.301	839.65	0.6260
Error C Total	38	50972.100	1341.37	Prob>F
C Total	40	52651.401		0.5402

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	8.8270302	11.7978	0.75	0.4589
A5 AVG RIVER FLOW CFS	0.0097168	0.00884	1.10	0.2785
A5 AVG RIVER FLOW CFS^2	-0.000001	0	-0.95	0.3483

H19 ANN ENT RATE FISH/HR By A5 AVG RIVER FLOW CFS

Fish/hr by River Flow All Data w/o Buzzards Roost and Dam #4

Summary of Fit

Rsquare 0.424392
Root Mean Square Error 15.62161
Mean of Response 15.32229
Observations (or Sum Wgts) 35

Analysis of Variance

Source	DF	Sum	of Squares	Mean Square	F Ratio
Model	1		5937.532	5937.53	24.3307
Error	33		8053.145	244.03	Prob>F
C Total	34		13990.677		0.0000

Parameter Estimates

 Term
 Estimate
 Std
 Error
 t
 Ratio
 Prob>|t|

 Intercept
 -1.743694
 4.35233
 -0.40
 0.6913

 A5 AVG RIVER FLOW CFS
 0.0108512
 0.0022
 4.93
 0.0000

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.62871
Root Mean Square Error 12.74093
Mean of Response 15.32229
Observations (or Sum Wgts) 35

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	8796.075	4398.04	27.0930
Error	32	5194.603	162.33	Prob>F
C Total	34	13990.677		0.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	18.071188	5.9074	3.06	0.0045
A5 AVG RIVER FLOW CFS	-0.016517	0.00676	-2.44	0.0203
A5 AVG RIVER FLOW CFS^2	0.0000059	0	4.20	0.0002

H19 ANN ENT RATE FISH/HR By A5 AVG RIVER FLOW CFS

Fish/hr by River Flow All Data w/o Clupeid Sites

Summary of Fit

Rsquare 0.230978
Root Mean Square Error 17.92201
Mean of Response 14.91389
Observations (or Sum Wgts) 36

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio Model 1 3280.078 3280.08 10.2120 Error 34 10920.752 321.20 Prob>F C Total 35 14200.830 0.0030

Parameter Estimates

 Term
 Estimate
 Std
 Error
 t
 Ratio
 Prob>|t|

 Intercept
 3.3416197
 4.69424
 0.71
 0.4814

 A5 AVG RIVER FLOW CFS
 0.006808
 0.00213
 3.20
 0.0030

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.233766
Root Mean Square Error 18.15852
Mean of Response 14.91389
Observations (or Sum Wgts) 36

Analysis of Variance

Source	DF	Sum	of Squares	Mean Square	F Ratio
Model	2		3319.675	1659.84	5.0339
Error C Total	33 35		10881.155 14200.830	329.73	Prob>F 0.0124

Parameter Estimates

Estimate Std Error t Ratio Prob>|t| Term 0.8534 Intercept 1.3780799 7.39775 0.19 A5 AVG RIVER FLOW CFS 0.0092528 0.00738 1.25 0.2186 A5 AVG RIVER FLOW CFS^2 0.7311 -4.5e-7 -0.35

Fish/hr by River Flow All Data w/o Buzzards Roost, Dam #4, Wisconsin River Division and Centralia

Summary of Fit

Rsquare 0.052119
Root Mean Square Error 9.103859
Mean of Response 10.92364
Observations (or Sum Wgts) 33

Analysis of Variance

Source	DF	Sum	of Squares	Mean	Square	F Ratio
Model	1		141.2728		141.273	1.7045
Error	31		2569.2876		82.880	Prob>F
C Total	32		2710.5604			0.2013

Parameter Estimates

 Term
 Estimate
 Std
 Error
 t
 Ratio
 Prob>|t|

 Intercept
 7.9093423
 2.80035
 2.82
 0.0082

 A5 AVG RIVER FLOW CFS
 0.0021772
 0.00167
 1.31
 0.2013

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.096932
Root Mean Square Error 9.032939
Mean of Response 10.92364
Observations (or Sum Wgts) 33

Analysis of Variance

Source	DF	Sum	of Squares	Mean	Square	F Ratio
Model	2		262.7407		131.370	1.6100
Error	30		2447.8196		81.594	Prob>F
C Total	32		2710.5604			0.2167

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	2.8070631	5.02072	0.56	0.5802
A5 AVG RIVER FLOW CFS	0.0102128	0.00679	1.50	0.1430
A5 AVG RIVER FLOW CFS^2	-0.000002	0	-1.22	0.2319

H19 ANN ENT RATE FISH/HR By A5 AVG RIVER FLOW CFS

Fish/hr by River Flow All Data w/o Buzzards Roost, Dam #4, Wisconsin River Division, Centralia and Five Channels

Summary of Fit

Rsquare 0.126458
Root Mean Square Error 6.00055
Mean of Response 9.742187
Observations (or Sum Wgts) 32

Analysis of Variance

DF	Sum	of Squares	Mean Square	F Ratio
1		156.3750	156.375	4.3430
30		1080.1979	36.007	Prob>F
31		1236.5729		0.0458
	1 30	1 30	1 156.3750 30 1080.1979	1 156.3750 156.375 30 1080.1979 36.007

Parameter Estimates

 Term
 Estimate
 Std Error
 t Ratio
 Prob>|t|

 Intercept
 6.5642659
 1.85759
 3.53
 0.0014

 A5 AVG RIVER FLOW CFS
 0.0022909
 0.0011
 2.08
 0.0458

Polynomial Fit, degree=2

Summary of Fit

Rsquare 0.146147
Root Mean Square Error 6.03396
Mean of Response 9.742187
Observations (or Sum Wgts) 32

Analysis of Variance

Source	DF	Sum	of Squares	Mean	Square	F Ratio
Model	2		180.7216		90.3608	2.4818
Error	29		1055.8514		36.4087	Prob>F
C Total	31		1236.5729			0.1012

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	4.2781638	3.36225	1.27	0.2133
A5 AVG RIVER FLOW CFS	0.0059327	0.00459	1.29	0.2062
A5 AVG RIVER FLOW CFS^2	-9.7e-7	0	-0.82	0.4202

APPENDIX 5

DETAILED STATISTICAL RESULTS OF SUPPLEMENTAL STATISTICAL ANALYSES

		·	
·.			·
			, in the second
	•		

PEARSON PRODUCT-MOMENT CORRELATIONS FOR THE AVERAGE AND FLOW-ADJUSTED ENTRAINMENT RATE VARIABLES

						•						*		Flow Adjusted
	Average River Flow	Reservoir Size	Total Storage	Usable Storage	Reservoir Flush Rate		Reservois Width	Plant Flow	Intake Submer- gence	Average Velocity	Trash Rack Spucing	Entrain ment Flow	Entrain- ment Rate	Entrain- ment Rate
Ave. River Flow (cfs)	1.0000	-0.6772	-0.6939	-0.5824	-0.7312	-0.7342	-0.4945	0.8942	-0.3162	0.5953	8886.0	0.9017	0.5245	-0.5677
Reservoir Size (in acres)	-0,6772	1.0000	0.9941	0.8848	0.9461	0.0550	0.8162	-0.3941	0.1578	0.1635	0.0669	-0.4435	0.2511	0.8436
Total Storage (in ac-fl)	-0,6939	0.9941	1.0000	0.8301	0.9126	0.1145	0.7491	-0.3798	0.2641	0.1114	0.0397	-0.4253	0.2005	0.7821
Usable Storage (in ac-ft)	-0.5824	0.884R	0.830i	1.0000	0.9737	-0.1200	0.9903	-0.4891	-0.3069	0.2734	0.0762	-0.5450	0.3434	0.9964
Reservoir Flush Rate (in days)	-0.7312	0.9461	0.9126	0.9737	1.0000	0.0739	0.9339	-0.5806	-0.0990	0.1055	-0.0631	-0.6303	0.1857	0.9584
Reservoir Length (in miles)	-0.7342	0.0550	0.1145	-0.1200	0.0739	1,6000	-0.2109	-0.7207	0.5770	-0.9723	-0.9374	-0.6822	-0.9480	-0.1279
Reservoir Width (feet)	-0.4945	0.8162	0.7491	0.9903	0.9339	-0.2109	1.0000	-0.4507	-0.4349	0.3407	0.1265	-0.5079	0.4023	0.9962
Plant How (in cfs)	0.8942	-0.3941	-0.3798	-0.4891	-0.5806	-0.7207	-0.4507	1.0000	0.0199	0.6747	0.8284	0.9979	0.6322	-0.5126
latake Submergence (in feet)	-0.3162	0.1578	0.2641	-0.3069	-0.0990	0.5770	-0.4349	0.0199	1.0000	-0.4643	-0.2617	0.0455	-0.4316	-0.3760
Average Velocity (in Ips)	0.5953	0.1635	0.1114	0.2734	0.1055	-0.9723	0.3407	0,6747	-0.4643	1.0000	0.9654	0.6271	0.9959	0.2659
Teach Rack Spacing (in inches)	8883.0	0.0669	0.0397	0.0762	-0.0631	-0.9374	0.1265	0.8284	-0.2617	0.9654	0000.1	0.7902	0.9559	0.0547
Engainment Flow (in cfs)	0.9017	-0.4435	-0.4253	-0.5450	-0.6303	-0.6822	-0.5079	0.9979	0.0455	0.6271	0.7902	1,0000	0.5812	-0.5677
Entrainment Rate (fish/hour)	0.5245	0.2511	0.2005	0.3434	0.1857	-0.9480	0.4023	0.6322	-0.4316	0.9959	0.9559	0.5812	1.0000	
Flow-Adjusted Entrainment Rate (fish/hr)/kefs	-0.5677	0,8436	0.7821	0.9964	0.9584	-0.1279	0.9962	-0.5126	-0.3760	0.2659	0.0547	-0.5677		(1,000)
Kale (Isth/hr)/kefs														

Note: Entrainment flow is the hydraulic capacity of the units represented by the entrainment estimate. This differs from the plant hydraulic capacity for several sites where entrainment estimates were not extrapolated to the entire plant flow.

PRINCIPAL COMPONENTS ANALYSIS FOR THE AVERAGE ENTRAINMENT RATE VARIABLE

I													
EigenValue:	6,4857	5.0738	1.4405	0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000
Percent:	49,8900	39.0290	11.0610	0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000
CumPercent:	49.8900	88.9190	100.0000	100.0000	100,0000	100,0000	100.0000	100,0000	100.0000	100,0000	100.0000	100,0000	100,0000
Eigenvectors:													
Ave. River Flow (cts)	0.38965	0.01707	-0.09788	0.13359	0.04854	0.56641	0.14045	0.17146	-0.44534	0,36108	0.33099	-0.08851	-0.04534
Reservoir Size (in acres)	-0.26188	0.29292	0.28884	0.01584	0.54903	0.17590	-0.32203	0.32883	-0.16659	0.11748	-0.40788	-0.07829	0.06111
Total Storage (in ac-lt)	-0.26338	0.26801	0.36417	0.03373	-0.48248	-0.24768	-0.03738	-0.03802	-0.12955	0.58227	0.05754	-0.06929	-0.25535
Usable Storage (in ac-ft)	-0.24770	0.34034	-0.09981	-0.06396	-0.04375	0.11039	0.74312	0.40713	0.23324	-0.09370	-0.05324	-0.08747	-0.05479
Reservoir Flush Rate (in days)	-0.29778	0.26904	0.02626	0.03190	-0.06515	0.16667	-0.38736	0.15341	0.11573	-0.37378	0.67400	-D 05931	-0.09782
Reservoir Length (in miles)	-0.27238	-0.31176	0,13350	0.22858	0.18415	-0.05442	0.10625	0.10226	0.26254	0.37237	0.32996	0.18725	0.59025
Reservoir Width (feet)	-0.21866	0,35368	-0.19454	0.02353	0.40382	0.02166	0.19419	-0.73494	-0.05289	0.12527	0.13882	-0.09611	-0.01333
Plant Flow (in cls)	0.36583	0.07910	0.26380	-0.13220	0.08444	0.29309	-0.10078	-0.11510	0.74599	0.22404	-0.01393	-0.12293	-0.18548
Intake Submergence (in feet)	-0.07757	-0.18863	0.73605	-0.14176	-0.05189	0.28310	0.28140	-0.25998	-0.20699	-0.33914	0.03223	0.07044	0.05533
Average Velocity (in los)	0.22289	0.36549	-0.00218	-0.52586	-0.20792	-0.05550	-0.08006	-0.01838	-0.08043	0.01015	0.01611	-0.20416	0.66245
Trash Rack Spacing (in inches)	0.27095	0.30962	0,16126	0.77510	-0.15212	-0.07947	0.02340	-0.07311	0.04792	-0.21726	-0.13051	-0.19677	0.25166
Entrainment Flow (in cfs)	0.38979	0.05037	0.26382	-0.00044	0.42904	-0,60668	0.16611	0.18609	-0.09751	-0.03767	9.34203	-0.11155	-0.16800
Total Entrainment (fish/hour)	0.19621	0.30415	0.03284	6.00000	-0.00000	0.00000	-0.00000	0.00000	0.00000	0.00000	-0.00000	0.90158	0.00000

PRINCIPAL COMPONENTS ANALYSIS FOR THE FLOW-ADJUSTED ENTRAINMENT RATE VARIABLE

ElpenValue:	7.0176	4.5131	1.4593	0.0000	0.0000	0.0000	6.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000
Percent:	53.9814	34,7162	11,3024	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000
CumPercent:	53,9814	88.6976	100.0000	100,0000	100.0000	100.0000	100.0000	100,0000	100.0000	100.0000	100.0000	100.0000	100.0000
Eigenvectors:													
Ave. River Flow (cfs)	-0.33709	0.20325	-0.10477	0,19073	0.06011	0.17596	0.10272	-0.03768	0.83952	-0.04160	-0.07287	0.17940	-0.08450
Reservoir Size (in acres)	0.32521	0,15417	0.32008	0,10998	-0.10907	-0.42852	0.46580	-0.30823	0.15175	-0.33775	-0.23780	-0.22763	0.05434
Total Storage (in ac-ft)	0,31651	0.12556	0.39204	-0.04840	-0.08897	0.27005	-0.60571	0.07516	0.10090	-0.34521	-0.28606	0.07940	-0.23906
Usable Storage (in ac-ft)	0.33407	0.21650	-0.06001	-0.05896	-0.18091	-0.18461	0,17033	0.75575	0.14779	-0.08407	0.34878	0.11478	-0.06109
Reservoir Flush Rate (in days)	0.35936	0.13985	0.06097	-0.00059	-0.15495	-0.09334	-0.21228	-0.49792	0.17846	0.35554	0.57624	0.15020	-0.09485
Reservoir Length (in miles)	0.13441	-0.43546	0.10690	0.23387	0.06873	-0.04716	-0.04492	-0.00231	0.06067	-0.22680	0.06957	0.57167	0.57447
Reservoir Width (leet)	0.31428	0.24569	-0.15310	0.13978	-0.19378	0.37931	0.35091	-0.05357	-0.21221	0.31482	-0.39794	0.42860	-0.06525
Plant Flow (in cls)	-0.30040	0.24364	0.25937	-0.11591	0.08901	0.26640	0.29128	-0.14665	-0.29513	-0.45144	0.40870	0.29297	-0.20170
Intake Submergence (in feet)	-0.00496	-0.23802	0.71166	-0.11424	0.15874	0.25294	0.25075	0.18643	0.13844	0.44789	0.04011	-0.12064	0.03207
Average Velocity (in tos)	-0.07458	0.46118	0.02731	-0.57768	-0.07719	0.06799	-0.07928	-0.04218	0.05717	0.04156	-0.07578	-0.02118	0.64611
Trach Rack Spacing (in inches)	-0.13802	0.42559	0.18238	0.71452	-0.02372	0.07839	-0.16308	0.11056	-0.19061	0.06758	0.12396	-0.24051	0.30543
Entrainment Flow (in cfs)	-0.31350	0.21754	0.25654	-0.02725	0.00050	-0.61472	-0.18051	0.07546	-0.11718	0,25921	-0.22284	0.45247	-0.18247
Entrainment Rate (lighthri/ticls	0,33118	0.21351	-0.12925	0.00000	0.90996	-0.00000	0.00000	0.00000	0.00000	-0,00000	-0.00000	0.00000	0.00000

Note: Entrainment flow is the hydraulic capacity of the units represented by the entrainment estimate. This differs from the plant hydraulic capacity for several sites where entrainment estimates were not extrapolated to the entire plant flow.

Scatter Plot Matrix of Correlation for Average Entrainment Rate

Response: Total Entrainment (fish/hour)

Summary of Fit

Rsquare 0.208632
Root Mean Square Error 363.5665
Mean of Response 79.96571
Observations (or Sum Wgts) 42

Lack of Fit

Source	DF	Sum of Squares	Mean	Square	F Ratio
Lack of Fit	35	4758487.0		135957	9324.881
Pure Error	1	14.6		15	Prob>F
Total Error	36	4758501.6			0.0082

I	Parar	neter	Esti	mates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	205.6413	98.7448	2.08	0.0445
Assembla[B-R]	-29.9493	127.933	-0.23	0.8162
Assembla[C-R]	404.25887	135.622	2.98	0.0051
Assembla[N-R]	-124.3948	104.13	-1.19	0.2401
Assembla[O-R]	-147.2458	106.959	-1.38	0.1771
Ave. River Flow (cfs)	-0.045896	0.03619	-1.27	0.2129

Effect Test

1						
	Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F
	Assemblage Code	4	4	1246250.7	2.3571	0.0719
	Ave. River Flow (cfs)	1	1	212531.3	1.6079	0.2129

Response: Total Entrainment (fish/hour)

Summary of Fit

Rsquare 0.858641
Root Mean Square Error 155.8785
Mean of Response 85.12439
Observations (or Sum Wgts) 41

Pa	ra	me	ete	r	Es	ti	m	ate	es

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-77.46497	33.782	-2.29	0.0280
Assembla[B-R]	20.132484	54.7121	0.37	0.7151
Assembla[C-R]	81.724996	76.1202	1.07	0.2903
Assembla[N-R]	3.8209661	46.2622	0.08	0.9346
Assembla[O-R]	<i>-</i> 79.87809	42.836	-1.86	0.0706
Reservoir Size (in acres)	0.1868581	0.01542	12.12	0.0000

Effect Test

Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F
Assemblage Code	4	4	104600.0	1.0762	0.3831
Reservoir Size (in acres)	1	1	3566903.9	146.7976	0.0000

Response: Total Entrainment (fish/hour)

Summary of Fit

Rsquare 0.692734
Root Mean Square Error 240.0315
Mean of Response 84.41079
Observations (or Sum Wgts) 38

Parameter	Estimates			
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-35.60232	51.9917	-0.68	0.4984
Assembla[B-R]	18.756248	90.3587	0.21	0.8369
Assembla[C-R]	57.446344	125.466	0.46	0.6501
Assembla[N-R]	9.8981935	74.6566	0.13	0.8954
Assembla[O-R]	<i>-</i> 72.17177	68.4501	-1.05	0.2996

0.0061907

Fffed	et '	Te	et

Total Storage (in ac-ft)

ı						
	Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F
l	Assemblage Code	4	4	73438.3	0.3187	0.8634
l	Total Storage (in ac-ft)	1	1	2541835.0	44.1175	0.0000

0.00093

6.64

0.0000

Response: Total Entrainment (fish/hour)

Summary of Fit

Rsquare 0.99842
Root Mean Square Error 27.63588
Mean of Response 152.1233
Observations (or Sum Wgts) 18

Parameter	Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-4.085363	9.15961	-0.45	0.6635
Assembla[B-R]	-4.434451	23.213	-0.19	0.8517
Assembla[C-R]	-4.986985	23.2009	-0.21	0.8334
Assembla[N-R]	-3.038437	12.553	-0.24	0.8128
Assembla[O-R]	-4.792191	12.5636	-0.38	0.7095
Usable Storage (in ac-ft)	0.0143585	0.00023	63.55	0.0000

Effect Test

Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F
Assemblage Code	- 4	4	1127.9	0.3692	0.8261
Usable Storage (in ac-ft)	1	1	3084037.1	4038.063	0.0000

Response: Total Entrainment (fish/hour)

Summary of Fit

Rsquare 0.400804
Root Mean Square Error 345.8058
Mean of Response 88.8
Observations (or Sum Wgts) 36

Lack of Fit

Source	DF	Sum of Squares	Mean Squ	ıare	F Ratio
Lack of Fit	29	3587289.9		23700	770.4110
Pure Error	1	160.6		161	Prob>F
Total Error	30	3587450.5			0.0285

Parameter Estimate	es			
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	127.90114	88.6656	1.44	0.1595
Assembia[B-R]	-113.7394	138.08	-0.82	0.4166
Assembla[C-R]	540.31387	221.161	2.44	0.0207
Assembla[N-R]	-137.075	113.552	-1.21	0.2368
Assembla[O-R]	-166.643	102.729	-1.62	0.1152
Reservoir Flush Rate (in days)	8.9549628	7.26411	1.23	0.2272

Effect Test

Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F
Assemblage Code	4	4	813781.98	1.7013	0.1758
Reservoir Flush Rate (in days)	1	1	181730.52	1.5197	0.2272

Response: Total Entrainment (fish/hour)

Summary of Fit

Rsquare 0.264456
Root Mean Square Error 19.16913
Mean of Response 16.84229
Observations (or Sum Wgts) 35

Lack of Fit

Source	DF	Sum of Squares	Mean	Square	F Ratio
Lack of Fit	28	10655.688		380,560	731.5654
Pure Error	1	0.520		0.520	Prob>F
Total Error	29	10656.209			0.0292

Parameter Estima	ates			
Term	Estimate	Std Error	t Ratio	Prob> t
intercept	23.108747	5.644	4.09	0.0003
Assembla[B-R]	18.052935	7.69615	2.35	0.0260
Assembla[C-R]	2.0652478	9.43867	0.22	0.8283
Assembla[N-R]	-10.29088	5.89733	-1.75	0.0916
Assembla[O-R]	-9.527403	5.93259	-1.61	0.1191
Reservoir Length (in miles)	-0.569754	1.09122	-0.52	0.6055

Effect Test

i	Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F	
	Assemblage Code	4	4	3161.7445	2.1511	0.0998	
	Reservoir Length (in miles)	1	1	100.1738	0.2726	0.6055	

Response: Total Entrainment (fish/hour)

ì		_				_		
	Sı	ı	m	m	a	rv	of	Fit

Rsquare 0.528578
Root Mean Square Error 17.92101
Mean of Response 17.0568
Observations (or Sum Wgts) 25

Par	ame	ter	Estim	ates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	18.053026	5.88485	3.07	0.0063
Assembla[B-R]	38.604422	9.47837	4.07	0.0006
Assembla[C-R]	4.5796608	9.67871	0.47	0.6415
Assembla[N-R]	-10.30589	6.78797	-1.52	0.1454
Assembla[O-R]	-15.08579	7.18644	-2.10	0.0494
Reservoir Width (feet)	0.0019421	0.00186	1.04	0.3102

Effect Test

Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F
Assemblage Code	4	4	6841.2266	5.3254	0.0048
Reservoir Width (feet)	1	1	349.1077	1.0870	0.3102

Response: Total Entrainment (fish/hour)

Summary of Fit

Rsquare 0.212639
Root Mean Square Error 362.8143
Mean of Response 83.92048
Observations (or Sum Wgts) 42

Parameter	Estimates		-	
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	163,90314	116.803	1.40	0.1691
Assembla[B-R]	-90.5268	123.952	-0.73	0.4699
Assembla[C-R]	446.09906	150.296	2.97	0.0053
Assembla[N-R]	-128.6054	106.248	-1.21	0.2340
Assembla[O-R]	-119.3609	104.862	-1.14	0.2625
Plant Flow (in cfs)	-0.012595	0.03485	-0.36	0.7199

Effect Test

Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F
Assemblage Code	4	4	1178494.1	2.2382	0.0842
Plant Flow (in cfs)	1	1	17189.8	0.1306	0.7199

Response: Total Entrainment (fish/hour)

Summary of Fit

Rsquare 0.29696
Root Mean Square Error 357.5702
Mean of Response 84.50769
Observations (or Sum Wgts) 39

Lack of Fit

<u> </u>				
Source	DF	Sum of Squares	Mean Square	F Ratio
Lack of Fit	111	4210981.8	382817	1017.06
Pure Error	22	8280.7	376	Prob>F
Total Error	33	4219262.4		0.0000

Parameter Estimates									
Term	Estimate	Std Error	t Ratio	Prob> t					
Intercept	192.14164	73,1882	2.63	0.0130					
Assembla[B-R]	-126.7586	123.091	-1.03	0.3106					
Assembla[C-R]	606.97153	165.453	3.67	0.0009					
Assembla[N-R]	-145.7414	102.678	-1.42	0.1652					
Assembla[O-R]	-163.0449	104.275	-1.56	0.1275					
Intake Submergence (in feet)	-9.111653	7.88518	-1.16	0.2562					

Effect Test

ĺ							
	Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F	
	Assemblage Code	4	4	1773673.1	3.4681	0.0180	
	Intake Submergence (in feet)	1	1	170723.7	1.3353	0.2562	

Response: Total Entrainment (fish/hour)

Summary of Fit

Rsquare 0.234366
Root Mean Square Error 37.36135
Mean of Response 22.42559
Observations (or Sum Wgts) 34

Lack of Fit

Source	DF	Sum of Squares	Mean	Square	F Ratio
Lack of Fit	26	38981.958		1499.31	29.2764
Pure Error	2	102.424		51.21	Prob>F
Total Error	28	39084.382			0.0335

Parameter Estimates									
Term	Estimate	Std Error	t Ratio	Prob> t					
Intercept	30.48438	11.3189	2.69	0.0118					
Assembla[B-R]	7.808018	13.8019	0.57	0.5761					
Assembia[C-R]	36.869578	16.375	2.25	0.0324					
Assembla[N-R]	-19.07203	12.0414	-1.58	0.1245					
Assembla(O-R)	-17.51608	11.5216	-1.52	0.1397					
Average Velocity (in fps)	-0.938488	4.33315	-0.22	0.8301					

(T 4	
Ff1	PCT	Lest	

ĺ	Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F
	Assemblage Code	4	4	11152.771	1.9975	0.1223
	Average Velocity (in tps)	1	1	65.478	0.0469	0.8301

Response: Total Entrainment (fish/hour)

Summary of Fit

Rsquare Root Mean Square Error 0.596054 26.01521 Mean of Response 21.85811 Observations (or Sum Wgts) 37

Lack of Fit

Source	DF	Sum of Squares	Mean	Square	F Ratio
Lack of Fit	24	20587.025		857.793	15.2593
Pure Error	7	393.501		56.214	Prob>F
Total Error	31	20980.525			0.0006

Parameter Estimates				
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-21.54372	10.4872	-2.05	0.0485
Assembla[B-R]	23.158161	10.4133	2.22	0.0336
Assembla[C-R]	-3.862152	12.2113	-0.32	0.7539
Assembla[N-R]	-11.90301	8.03169	-1.48	0.1484
Assembla[O-R]	-8.004203	7.54784	-1.06	0.2971
Trash Rack Spacing (in inches)	17.425741	3,2936	5.29	0.0000

Effect Test

i	Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F
	Assemblage Code	4	4	4576.874	1.6907	0,1773
	Trash Rack Spacing (in inches)	1	1	18944.986	27.9924	0.0000

Response: Total Entrainment (fish/hour)

Summary of Fit

Rsquare 0.209848
Root Mean Square Error 363.4567
Mean of Response 83.92048
Observations (or Sum Wgts) 42

Parameter Estin	nates			
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	133.34585	111.839	1.19	0.2409
Assembla[B-R]	-94.09433	124.408	-0.76	0.4544
Assembla[C-R]	428.99748	146.448	2.93	0.0059
Assembla[N-R]	-119.9108	105.621	-1.14	0.2638
Assembla[O-R]	-107.5916	103.677	-1.04	0.3063
Entrainment Flow (in cfs)	-0.001851	0.03394	-0.05	0.9568

Effect Test					
Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F
Assemblage Code	. 4	4	1152152.7	2.1804	0.0908
Entrainment Flow (in cfs)	1	1	393.0	0.0030	0.9568

Response: Total Entrainment (fish/hour)

Summary of Fit

Rsquare 0.377289
Root Mean Square Error 20.64274
Mean of Response 17.39214
Observations (or Sum Wgts) 28

Parameter Estimate	S			
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-13.87952	19.6157	-0.71	0.4874
Assembla[B-R]	22.31279	8.77862	2.54	0.0194
Assembla[C-R]	-8.05055	13.3971	-0.60	0.5546
Assembla[N-R]	-9.549192	7.40812	-1.29	0.2121
Assembla(O-R)	-6.367792	7.32307	-0.87	0.3949
Average Velocity (in fps)	7.8745218	5.64123	1.40	0.1781
Trash Rack Spacing (in inches)	8.3474907	5.60034	1.49	0.1517
Reservoir Length (in miles)	-0.300984	1.82798	-0.16	0.8709

Effect Test					
Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F
Assemblage Code	4	4	3466.6223	2.0338	0.1282
Average Velocity (in fps)	1	1	830.3005	1.9485	0.1781
Trash Rack Spacing (in inches)	1	1	946.7114	2.2217	0.1517
Reservoir Length (in miles)	1	1	11.5526	0.0271	0.8709

A5-53

Response: Entrainment Rate (fish/hr)/kcfs

Summary of Fit

Rsquare 0.347585
Root Mean Square Error 84.39258
Mean of Response 27.43186
Observations (or Sum Wgts) 41

Lack of Fit

<u> </u>				
Source	DF	Sum of Squares	Mean Square	F Ratio
Lack of Fit	34	249266.53	7331.37	1015.808
Pure Error	1	7.22	7.22	Prob>F
Total Error	35	249273.75		0.0248

Parameter Estimates								
Term	Estimate	Std Error	t Ratio	Prob> t				
Intercept	81.849035	24.1078	3.40	0.0017				
Assembla[B-R]	-10.80629	29.721	-0.36	0.7184				
Assembla[C-R]	145.46872	34.7617	4.18	0.0002				
Assembla[N-R]	-43.5273	24.5549	-1.77	0.0850				
Assembla[O-R]	-51.23961	25.3986	-2.02	0.0514				
Ave. River Flow (cfs)	-0.019403	0.00864	-2.25	0.0312				

Effect Test

Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F
Assemblage Code	4	4	129901.11	4.5598	0.0045
Ave. River Flow (cfs)	1	1	35911.97	5.0423	0.0312

Response: Entrainment Rate (fish/hr)/kcfs

Summary of Fit

Rsquare 0.792717
Root Mean Square Error 49.92275
Mean of Response 32.59445
Observations (or Sum Wgts) 41

Parameter Esti	mates			
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-8.042385	10.8193	-0.74	0.4622
Assembla[B-R]	-3.418664	17.5225	-0.20	0.8464
Assembla[C-R]	33.64719	24.3788	1.38	0.1763
Assembla[N-R]	-4.410885	14.8163	-0.30	0.7677
Assembla[O-R]	-10.49493	13.719	-0.76	0.4494
Reservoir Size (in acres)	0.0460331	0.00494	9.32	0.0000

Fffe	c t	Toet	
	121	Lest	

Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F
Assemblage Code	4	4	5488.71	0.5506	0.6998
Reservoir Size (in acres)	1	1	216474.79	86.8581	0.0000

Response: Entrainment Rate (fish/hr)/kcfs

Summary of Fit

Rsquare 0.74923
Root Mean Square Error 54.66423
Mean of Response 28.41341
Observations (or Sum Wgts) 38

Parameter Esti	mates			
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-1.580173	11.8405	-0.13	0.8947
Assembla[B-R]	-0.21986	20.5781	-0.01	0.9915
Assembla[C-R]	26.42937	28.5734	0.92	0,3619
Assembla[N-R]	1.0153242	17.0021	0.06	0.9528
Assembla[O-R]	-18.13871	15.5887	-1.16	0.2532
Total Storage (in ac-ft)	0.0015726	0.00021	7.41	0.0000

Effect Test

05748A.B02

Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F
Assemblage Code	4	4	5795.63	0.4849	0.7467
Total Storage (in ac-ft)	1	1	164017.65	54.8889	0.0000

A5-66

Response: Entrainment Rate (fish/hr)/kcfs

Summary of Fit

Rsquare 0.997405
Root Mean Square Error 8.814261
Mean of Response 41.71965
Observations (or Sum Wgts) 18

Parameter Estin	nates			
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	1.1560372	2.92139	0.40	0.6993
Assembia[B-R]	-3.361273	7.40363	-0.45	0.6579
Assembla[C-R]	-4.833045	7.39977	-0.65	0.5260
Assembla[N-R]	5.5824037	4.00367	1.39	0.1885
Assembla[O-R]	-1.913619	4.00705	-0.48	0.6415
Usable Storage (in ac-ft)	0.003601	0.00007	49.97	0.0000

Effect Test

Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F
Assemblage Code	4	4	260.80	0.8392	0.5262
Usable Storage (in ac-ft)	1	1	193975.71	2496.753	0.0000

Response: Entrainment Rate (fish/hr)/kcfs

Summary of Fit

Rsquare 0.508939
Root Mean Square Error 78.84314
Mean of Response 29.91766
Observations (or Sum Wgts) 36

Lack of Fit

Source Lack of Fit Pure Error	. 29 1	Sum of Squares 186476.15 11.07	Mean Square 6430.21 11.07	F Ratio 580.8715 Prob>F
Total Error	30	186487.22		0.0328

Parameter Estimate	es			
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	34.131664	20.2156	1.69	0.1017
Assembla[B-R]	-29.00547	31.4819	-0.92	0.3642
Assembla[C-R]	135.81644	50.4243	2.69	0.0115
Assembla[N-R]	-32.54186	25.8896	-1.26	0.2185
Assembla[O-R]	-41.5103	23.422	-1.77	0.0865
Reservoir Flush Rate (in days)	3.2236364	1.6562	1.95	0.0610

Effect Test

Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F
Assemblage Code	4	4	51071.795	2.0540	0.1119
Reservoir Flush Rate (in days)	1	1	23550.081	3.7885	0.0610

Response: Entrainment Rate (fish/hr)/kcfs

Summary of Fit

Rsquare 0.103479
Root Mean Square Error 10.48048
Mean of Response 9.927798
Observations (or Sum Wgts) 35

Lack of Fit

Source	DF	Sum of Squares	Mean	Square	F Ratio
Lack of Fit	28	3185.2912		113.760	1370.658
Pure Error	1	0.0830		0.083	Prob>F
Total Error	29	3185.3742			0.0214

Parameter Estimates									
Term	Estimate	Std Error	t Ratio	Prob> t					
Intercept	13.542404	3.08579	4.39	0.0001					
Assembla[B-R]	2.168316	4.20778	0.52	0.6102					
Assembla[C-R]	0.0261143	5.16047	0.01	0.9960					
Assembla[N-R]	-1.096854	3.22429	-0.34	0.7362					
Assembla[O-R]	1.9770167	3.24357	0.61	0.5469					
Reservoir Length (in miles)	-0.895233	0.59661	-1.50	0.1443					

Fffo	ct	To	et
Ette	LL	ı e	SL

ı	<u> </u>					
	Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F
	Assemblage Code	4	4	117.87522	0.2683	0.8960
	Reservoir Length (in miles)	1	1	247.31520	2.2516	0.1443

Response: Entrainment Rate (fish/hr)/kcfs

Summary of Fit

Parameter Estimates								
Term	Estimate	Std Error	t Ratio	Prob> t				
Intercept	7.4574895	3.70336	2.01	0.0584				
Assembla[B-R]	5.7156422	5.96477	0.96	0.3500				
Assembla[C-R]	3.2501867	6.09085	0.53	0.5998				
Assembla[N-R]	-0.485499	4.27169	-0.11	0.9107				
Assembla[O-R]	-1.02302	4.52245	-0.23	0.8235				
Reservoir Width (feet)	0.0008169	0.00117	0.70	0.4943				

Effect Test

Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F
Assemblage Code	4	4	181.09855	0.3560	0.8367
Reservoir Width (feet)	1	1	61.76189	0.4856	0.4943

Response: Entrainment Rate (fish/hr)/kcfs

Summary of Fit

Rsquare 0.241097
Root Mean Square Error 94.21858
Mean of Response 32.19241
Observations (or Sum Wgts) 42

Parameter	Estimates			
Term	Estimate	Std Error	t Ratio	Prob> t
intercept	68.247701	30.3325	2.25	0.0307
Assembla[B-R]	-27.84632	32.1889	-0.87	0.3927
Assembla[C-R]	130.13977	39.0302	3.33	0.0020
Assembla[N-R]	-41.27702	27.5914	-1.50	0.1434
Assembla[O-R]	-26.22492	27.2315	-0.96	0.3420
Plant Flow (in cfs)	-0.009302	0.00905	-1.03	0.3109

Effect Test

Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F
Assemblage Code	4	4	101143.95	2.8484	0.0378
Plant Flow (in cfs)	1	1	9375.69	1.0562	0.3109

Response: Entrainment Rate (fish/hr)/kcfs

Summary of Fit

Lack of Fit

Source	DF	Sum of Squares	Mean	Square	F Ratio
Lack of Fit	11	253678.14		23061.6	225.1952
Pure Error	2 2	2252.96		102.4	Prob>F
Total Error	33	255931.10			0.0000

Parameter Estimate	es			
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	51.374334	18.0254	2.85	0.0075
Assembla[B-R]	-35.89792	30.3158	-1.18	0.2448
Assembla(C-R)	158.30511	40.7491	3.88	0.0005
Assembla[N-R]	-38.03458	25.2884	-1.50	0.1421
Assembla[O-R]	-40.17611	25.6817	-1.56	0.1273
Intake Submergence (in feet)	-1.305494	1.94203	-0.67	0.5061

Effect Test

05748B.B02

Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F
Assemblage Code	4	4	120197.38	3.8746	0.0109
Intake Submergence (in feet)	1	1	3504.69	0.4519	0.5061

Response: Entrainment Rate (fish/hr)/kcfs

			_
Summ	arv	of	Fit

Rsquare 0.268117
Root Mean Square Error 21.90541
Mean of Response 13.08726
Observations (or Sum Wgts) 33

•			
	1 _	_ 2	—
	ack	ΔT	Fit
	- AL-R		
		•	

Source	DF	Sum of Squares	Mean	Square	F Ratio
Lack of Fit	25	12937.018		517.481	54.9087
Pure Error	2	18.849		9.424	Prob>F
Total Error	27	12955.867			0.0180

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	20.438544	6.7355	3.03	0.0053
Assembla[B-R]	-5.292173	8.19366	-0.65	0.5238
Assembla[C-R]	31.537137	10.8719	2.90	0.0073
Assembla[N-R]	-7.74845	7.18067	-1.08	0.2901
Assembla[O-R]	-7.849477	6.87088	-1.14	0.2633
Average Velocity (in fps)	-1.460155	2.54118	-0.57	0.5703

Effect Test

05748B.B02

Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F
Assemblage Code	4	4	4134.0145	2.1538	0.1015
Average Velocity (in fps)	1	1	158.4273	0.3302	0.5703

Response: Entrainment Rate (fish/hr)/kcfs

Summary of Fit

Lack of Fit

Source	DF	Sum of Squares	Mean Square	F Ratio
Lack of Fit	23	8436.7593	366.816	56.8522
Pure Error	7	45.1647	6.452	Prob>F
Total Error	30	8481.9240		0.0000

Parameter Estimate	s			
Term	Estimate	Std Error	t Ratio	Prob> t
intercept	-16.30004	7.64508	-2.13	0.0413
Assembia[B-R]	5.8898801	6.88728	0.86	0.3992
Assembla[C-R]	-2.860674	9.47986	-0.30	0.7649
Assembla[N-R]	-2.5173	5.32374	-0.47	0.6397
Assembla[O-R]	1.8525659	5.06291	0.37	0.7170
Trash Rack Spacing (in inches)	10.812695	2.3329	4.63	0.0001

Effect Test

05748B.B02

Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F
Assemblage Code	4	4	307.3060	0.2717	0.8939
Trash Rack Spacing (in inches)	1	1	6073.6327	21.4820	0.0001

Response: Entrainment Rate (fish/hr)/kcfs

Summary of Fit

Rsquare 0.229256
Root Mean Square Error 94.95081
Mean of Response 32.19241
Observations (or Sum Wgts) 42

Parameter Estimates							
Term	Estimate	Std Error	t Ratio	Prob> t			
Intercept	58.816143	29.2173	2.01	0.0516			
Assembla[B-R]	-28.4532	32.5008	-0.88	0.3871			
Assembla[C-R]	123.26829	38.2587	3.22	0.0027			
Assembla(N-R)	-38.33485	27.5928	-1.39	0.1733			
Assembla[O-R]	-22.32091	27.0849	-0.82	0.4153			
Entrainment Flow (in cfs)	-0.006187	0.00887	-0.70	0.4898			

Effect Test

Lifect Test					
Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F
Assemblage Code	4	4	96029.582	2.6629	0.0481
Entrainment Flow (in cfs)	1	1	4389.072	0.4868	0.4898
l					

Response: Entrainment Rate (fish/hr)/kcfs

Summary of Fit

Rsquare 0.791199
Root Mean Square Error 9.274219
Mean of Response 8.869983
Observations (or Sum Wgts) 8

Parameter Estimate	es			·
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	11.685179	7.41443	1,58	0.2131
Assembla[N-O]	-4.350896	7.87421	-0.55	0.6191
Usable Storage (in ac-ft)	0.0297343	0.01814	1.64	0.1997
Reservoir Width (feet)	-0.00489	0.0033	-1.48	0.2345
Reservoir Flush Rate (in days)	-8.437519	7.0878	-1.19	0.3195

Effect Test								
Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F			
Assemblage Code	1	1	26.26022	0.3053	0.6191			
Usable Storage (in ac-ft)	1	1	231.06711	2.6865	0.1997			
Reservoir Width (feet)	1	1	189.38281	2.2018	0.2345			
Reservoir Flush Rate (in days)	1	1	121.88802	1.4171	0.3195			

