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Chapter R22 – Life Safety Consequences 

 
The purpose of this chapter is to address the consequence side of the risk equation.  The 
starting point for determining the consequences is the assumption that some loading 
condition has driven the dam to failure or otherwise resulted in an uncontrolled release of 
water.  Chapter R21 provides guidance on determining the breach size and routing the 
water downstream from that breach, this Chapter, R22, provides guidance on determining 
impacts on downstream life safety and Chapter R23 provides guidance on determining 
the economic consequences of dam failure. 
 

R22.1 Introduction and Purpose 

 
Flood water released when a dam fails can be a devastating force.  Dam failures in the 
United States have historically taken many lives and have destroyed much property. By 
the same token, a number of dams fail each year in the United States without a single life 
lost. Physical and human factors both contribute to potential life loss, as does a certain 
amount of chance (USBR 2009).  
 
Four primary factors affect potential life loss in dam failure scenarios:  
 

● The number of people occupying the area inundated by a dam-break flood 
● The amount of warning provided in relation to the time required to move to a safe 

location 
● The intensity of the flow to which people are exposed 
● The timing of the dam failure (e.g. day or night, summer or winter).  Timing can 

affect both the number of people downstream and the amount of warning time 
available. 

 
The purpose of this chapter is to explain the theory behind the calculation of life loss 
consequences. Several current methodologies  are discussed that can be used for these 
calculations.  For specifics on how to perform analyses, the reader should refer to the 
guidance for the particular tool.  Multiple levels of analysis will be discussed, with the 
understanding that risk analysis is not one-size-fits-all, but rather scalable based on the 
available data and questions to be answered.  
 
 

R22.2 Life Safety Analysis 
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R22.2.1 Levels of Risk – Scalability 

 
Scalability of the determination of consequences is important for adjusting the level of 
effort of the analysis to the degree of uncertainty acceptable to the risk assessment.  For 
the baseline assessment of a dam that has a very low probability of causing a fatality an 
in-depth simulation may be an unnecessary waste of resources.  On the other extreme, 
when assessing a dam capable of causing mass casualties it may be necessary to reduce 
the uncertainty of the estimate to obtain confidence in an annualized life loss.  In this case 
a simulation, taking into account factors such as evacuation rates and routes may be 
justified.  Like most things in risk analyses, consequence estimation should be an 
iterative or tiered process, starting with the most simple and approximate analysis and 
working up in complexity as is required to make an informed decision.  
 
The U.S. Bureau of Reclamation (USBR) has identified two categories for analysis of life 
safety consequences, which they refer to as notional and simulation.  Notional refers to 
the methods that utilize historic dam failure databases to develop empirical formulas to 
translate the PAR into PLL.  The notable limitation of this methodology is that it is 
limited to the historical record of dam failures, which is dominated by smaller dams (<50 
feet high).  The most widely used notional method is the Graham Method (1999).  
Simulation methods attempt to model flood flows, human behavior, traffic patterns, safe 
havens, and warning times to predict how effective an evacuation would be at getting 
people out of harm’s way. 
 
Multiple levels of complexity are presented below (section R22.3.2) for each of the three 
life safety consequence factors.  These levels are by no means exhaustive, and 
combinations of several methods can be used (i.e. one method for PAR, and another for 
PLL).  The important factor, again, is that the analysis be rigorous to the extent that the 
confidence level is high enough to facilitate a dam safety decision, and that all the 
assumptions in the analysis are well documented and justified. 
 
 
 
 
Generalized levels of Life Loss Prediction 

 Effort 
Level 

PAR PLL Timing 
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Medium Using GIS methods 
with census block data 
and inundation areas 
to estimate the PAR.  

Using empirical 
methods to estimate 
life loss due to 
warning time and 
severity of flood 
(DSO-99-06). 

1D flow model 
interpolated results 
used for flood timing 
and velocity.  
Seasonal changes in 
population  
considered. 

High Door-to-door census 
and elevation 
surveying of 
structures. 

Using simulation 
models to predict 
movements of 
residents based on 
warning time, traffic 
models, flood wave 
velocity, etc. 

2D flow model 
gridded results used 
for flood timing and 
velocity.   

 
The levels of rigor provided above are in matrix form due to the ability to mix and match 
among the inputs.  The overriding purpose behind refining a life safety analysis is to 
reduce the uncertainty in the estimate of life loss.  The level of uncertainty is largely 
dependent on the population distribution in the area inundated by the dam failure.  Two 
extreme examples of this are: 

● A small number (dozen) of impacted homes are year round residences, all 
well within the inundation area, and subject to very high increases of depth 
and velocity.  With a simple 1D model we can estimate the PAR with little 
uncertainty.  Obtaining the PLL we could assume that all residents perish, 
or we could apply DSO-99-06 (USBR 1999) and estimate between 75-
100% fatalities. 

 
● The opposite case would be a dam failure inundation area that affects a 

large urban population in a wide, flat flood plain.  There would be a large 
mix of structure types, which could resist damage and provide shelter over 
a wide range of flood intensities.  The wide flood plain would need a 2D 
model to accurately estimate the wide range of depths and velocities in the 
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impacted areas.  The population would need to be accurately estimated, by 
structure, due to the number of high rise structures, hospitals, schools, and 
other large population concentrations that cannot be gleaned from the 
census data.  A simulation model could be justified if the population has 
time for partial evacuation and factors like mobilization and traffic 
congestion could affect numbers greatly. 

 
In between the two extremes are many other combinations of analyses.  Each must be 
evaluated on a case-by-case basis depending on the downstream area.  The level of rigor 
of the consequence analysis is somewhat independent of the potential failure mode, 
unless the risk of the failure mode is so close to tolerable that getting a better estimate 
might make the difference in the decision making. 
 
In general for a screening level analysis (Level 1 Risk Analysis, as per Chapter R24), 
uncertainty should be kept within one order of magnitude and the low level analyses can 
be used.  More refined tools should be used for higher level risk analyses. 

R22.2.2 Data Needed 

 
Inundation Area - 
The area inundated by a dam failure should be obtained from a dam breach hydraulic 
model.  The procedure for conducting a dam failure analysis is described in Chapter R21.  
For risk analysis purposes the inundation area will be the product of a particular failure 
mode, and there may be many different inundation areas for a single dam.  These data are 
normally supplied as vector files that can be used in a Geographic Information System 
(GIS) to overlay the impact area with downstream populated areas.  For screening level 
analysis, paper maps may be sufficient. 
 
Flood Depth and Velocity 
The severity of the flooding affects the lethality of the flood to the non-evacuated PAR 
and is determined by the depth and velocity of the water.  It takes very little fast moving 
water to move a car and prevent evacuation, while deep slow-moving flood waters could 
be navigated by wading or swimming. The depth and velocity of the dam failure 
inundation should be provided from the hydraulic model.   
 
Timing 
There are several factors related to the timing of the flood which affect downstream life 
loss consequences.   

Travel Time - 
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The time for the dam failure hydrograph to travel downstream from the dam and 
inundate the downstream populated area to a level that will begin to threaten 
residents (a function of Depth-Velocity).  The travel time affects the amount of 
time available to issue a warning and for the PAR to evacuate.  The travel time of 
the dam failure inundation hydrograph can be inferred from the hydraulic model.  

Time of Day - 
The time of day can affect the PAR if the area has a large commuter population and 
the residences and workplaces are not both affected by flooding.  The time of day 
can also have impacts on the detection and assessment of the failure as well as 
effectiveness of the evacuation, especially if the failure occurs during the middle of 
the night. 

Time of Year - 
The time of year has a twofold impact, possibly changing the seasonal PAR and 
affecting the survivability if the flood occurs in winter.   

 
Census Data 
The U.S. Census data is available on the web in two parts.  The first part is the 
TIGER/Line® Shapefile of the census unit.  The census blocks can range from an entire 
county down to a census block that is the size of one city block.  The second part of the 
census information is the data tables that are associated with the census units.  Each unit 
has a unique identifier which corresponds to a row in the database to allow for cross 
referencing.  Useful data fields include the count of permanent residents in each census 
unit, as well as the average number of residents per structure. 
 
Evacuation Routes 
Evacuation routes are used in simulation models (and can be used in notional estimation, 
if enough information is available) to estimate the life loss of a population at risk.  
Several factors about the routes can be taken into account in the evacuation simulation, 
such as:  

● Do the routes remain open during the event, or are they submerged and impassible 
at some time? 

● If the evacuation routes are submerged or impassible, does this occur before or 
after the evacuation area becomes flooded? 

● Does the route include bridges which could be impacted by scour or debris?  
● Are the evacuation routes of such a capacity to successfully evacuate the PAR? 
● Is traffic congestion of the evacuation routes a concern? 

 
Warning/Evacuation Timing 
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Timing of the evacuation is needed to compare to the timing of the flood, to determine if 
a full evacuation will be possible in the time available.  In general, the more time that is 
needed to evacuate, the less successful the evacuation will be. 

R22.2.2 Analysis Techniques 

R22.2.2.1 Population at Risk Determination 

 
People who live, work, or recreate in, or temporarily pass through inundated areas can be 
exposed to dambreak flooding.  There are several methods to count these people, each 
with its strengths and weaknesses.  For flood failure modes it may be necessary to 
separate the populations that are flooded before and after the dam failure to determine 
what portion of the population is affected by the dam breach.  A few methods are 
discussed below.  
 

● Counting homes on aerial photos or paper maps 
 
The Internet provides several useful tools to perform a quick reconnaissance: Google 
Earth, MapQuest, TerraServer.  In this method the inundation area is overlain on the 
aerial data and homes are counted by hand.  Census data from the DataSets tab of the 
American FactFinder website can be used to quickly determine the average number of 
residents per permanent structure by county.  For more densely populated areas the total 
population can be multiplied by the percentage of that town that is inundated. Campsites 
and other transient populations can be estimated and simply multiplied by the time of 
year they are present.  The internet is a good resource for finding the capacity of 
recreational areas.  Everything falling within the inundation area is considered part of the 
PAR, unless there is flood depth information available that could exclude some of the 
area from life safety impacts. 
 

● GIS and Census data  
 
Automated processes are usually used to count population at risk for higher levels of 
study when the threatened population is large. Here, results from flood routing studies are 
converted into GIS format, and census data are overlain. The entire resident population of 
a census block is added to the population at risk when census blocks are entirely within 
inundated areas. When a portion of the census block is inundated, the block's population 
is multiplied by a fraction proportional to the percent of the block's area that is inundated 
(called an area-weighted average).  Using the area-weighted method assumes that the 
population in the census block is evenly distributed.  A crude upper bound estimate 
counts the entire population from partially inundated census blocks. Inundated areas can 
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include residential tracts, commercial and industrial zones, recreational usage areas, and 
roads or railroads with high traffic volumes. The number of people in any of these areas 
can change according to time of day, day of the week, and season of the year, and can 
increase steadily year by year. 
 

● Surveying and Ground Truthing 
 
The most labor intensive yet most accurate way to determine the PAR is by surveying 
structure elevations and conducting a door-to-door census of the downstream population.  
Having accurate structure elevation data can help alleviate errors caused by the resolution 
of the aerial elevation data (DEM or otherwise), and can help determine exactly how 
severely a flood will affect the structure (i.e. what is the lowest habitable elevation, 
foundation type, construction type, etc.).  Census data becomes out of date with age, and 
conducting a door-to-door census as part of the investigation ensures that data is as up to 
date as possible, and that the correct number of residents, and their times of residency 
(seasonal, day/night, etc.) are accurate.   
 
While this process may be cost prohibitive for very large downstream populations, it may 
be a very reasonable method to get the most accurate data for small downstream 
populations.  This is especially true if the decision of whether to do major remediation is 
based life safety impacts to a very small group. 

R22.2.2.2 Flood Severity 

 
Flood severity using the Reclamation’s notional method is broken into three categories; 
low, moderate, and severe.  These categories are determined by the depth and velocity of 
the flooding.  Low severity flooding is such that an able bodied adult would be able to 
wade out of harm’s way.  Safe havens such as home would still be intact and could be 
used for shelter.  Severe flooding is generally deep and fast flowing water that would be 
capable of exceeding the structural integrity of a perceived safe haven, be it the second 
story of a home or a tree. With severe flooding, fatality rates are thought to be higher 
when the deep and fast-flowing water rises rapidly than when there is a gradual rise to the 
peak discharge level.  
 
Distinctions between flood severity categories are vague. For instance, five feet of water 
flowing at 1 foot per second would probably not disturb a two-story brick home, but it 
certainly would pick up and very likely destroy a mobile home. So for a housing 
development mostly comprised of brick homes, such flows might be considered low 
severity, but might be considered moderate severity for a trailer park.  Severity categories 
should be determined using site specific information and engineering judgment.  Hazard 
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curves are available from FEMA HAZUS model and the USBR Hazard Classification 
Guidelines for several types of structures.  These can give an indication of what flood 
intensity a safe haven could survive.  

R22.2.2.3 Flood/Warning Timing 

 
The speed at which the dam fails (breach development time) and the travel time for the 
resulting flood wave to reach the location of the population at risk is another factor 
affecting the mortality rate of the dam failure.  With sufficient time, evacuation can be 
very effective at relocating the populace out of harm’s way, but a sudden failure that 
results in a fast moving flood wave can decimate downstream areas if no warning is 
received.   
 
There are several factors, or components of warning  time, to consider in a consequence 
analysis that are described more thoroughly in the definitions section above.  The time it 
takes to detect the breach, confirm that it has occurred and notify the downstream 
residents can collectively be called the warning time.  Subtracting this time from the time 
the flood becomes dangerous at the resident’s location (Time to Impact) yields the excess 
warning time.  This excess is the available time for the resident to leave the danger area. 
 
Each of these factors needs to be adjusted for the particular failure mode and the time the 
failure occurs.  A failure in the middle of the day, when operators are on site, could have 
a very different warning time than the same failure in the middle of the night.  These 
variables should be factored into the timing and accounted for in the discussion of 
uncertainty. 
 
In general, the historic record indicates that most fatalities from dam failures occur in the 
first 15 miles downstream (Graham 1999).  While this may be a good rule of thumb for 
dams that fit well within the historic record, it should not replace good engineering 
judgment for dams that do not fit the record.   

R22.2.2.4 Predicted Life Loss Determination 

 
Once the dam breach and flood characteristics have been assigned and the population at 
risk identified, there are two basic types of analysis to estimate life loss: one is notional, 
empirically based on a small number of past instances, while the other employs 
simulation that attempts to model people’s response to the situation.  Fatality rates for 
both the notional and simulation methods depend on flood severity, which can be tied to 
flood depths and velocities.  
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The recommended fatality rates from any method can be adjusted when justified by 
extenuating circumstances. If a particularly devastating earthquake is responsible for dam 
failure, it is quite likely the earthquake has also devastated infrastructure and 
communications in population centers in the vicinity. Every aspect of warning (i.e. 
detection, decision, notification, and dissemination) may be affected, and evacuation 
routes may be compromised. Emergency management personnel would be responding to 
several situations and will not be able to devote their entire attention on a developing 
situation at a dam. It may be reasonable to increase the fatality rates for this case. 
 

● Notional Method - Graham’s Method 
 
In developing the notional method, forty flood events were scrutinized and population 
centers affected by the flooding were categorized. The reported number of fatalities at 
each population center divided by the estimated population at risk at the time of the flood 
event defined the fatality rate assigned to each combination of the severity, warning time, 
and danger perception categories. 
 
To use the notional method to assign fatality rates for hypothetical dam failures, each 
population center below a dam is assigned a flood severity, warning time, and danger 
perception category. The fatality rate for the appropriate combination is applied to the 
estimated population at risk. Reclamation's full notional method has three categories for 
flood severity, three categories for warning time, and two categories for danger 
perception.  
 
In the absence of detailed hydraulic modeling Graham’s method uses a simple table 
based on empirical data to estimate the warning time based on the type of failure and 
whether or not an observer would be present.  This table gives the time from the breach 
that a warning is issued.  Timing is then generalized based on distance downstream of the 
dam.   
 
The fatality rates estimated in this method account for evacuation, and thus no reduction 
in population at risk should occur prior to applying the fatality rates.   FERC’s method, 
used in EAP evaluations breaks warning time into stages: detection, assessment, 
notification, and dissemination.  These times are compared with the hydraulic model to 
determine the amount of excess time to evacuate. 
 
Human factors can also contribute to life loss due to the choices people make, such as to 
remain in harm's way when warned to leave and leaving a threatened location too late 
when there should have been adequate time for evacuation. There can be many reasons 
why people who are not at risk initially will enter the inundation area either before or 
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after the peak discharge has reached their location. Not all people who lose their lives as 
a result of dambreak flooding do so by drowning (for example the stress can trigger heart 
attacks or other fatal ailments).  All of these random factors are accounted for in the 
notional method, since it is based on historic failures. 
 

● Incremental Hazard 
 
In performing dam safety risk analysis a significant change from Chapter 2 of the FERC 
Engineering Guidelines must be made in accounting for the incremental damages, 
specifically fatalities, caused by a dam failure during a flooding event.  In traditional IDF 
analysis a 2-foot incremental rise has historically been used a ‘rule of thumb’ for 
determining a significant increase in hazard.  This criterion made sense for a screening 
level assessment of PAR or a hazard rating assessment, but it has no relation to PLL.  
Simply stating the vertical rise of the flood water tells nothing about the survivability.   
 
To assess incremental hazard for a dam safety risk analysis it is recommended that two 
inundation maps be prepared, as in an IDF analysis, but instead of comparing flood 
depth, survivability would be compared.  The depth-velocity (DV) grids of each 
inundation map would be subtracted to yield ΔDV.  If the dam failure increased the 
severity of flooding in a populated area enough to statistically ‘assure’ a fatality, it would 
be tallied as a significant consequence of the failure.   
 
For example, an area that would be dry during a flood has a population of 100 people.  
Due to the dam failure this area would be subjected to low severity flooding that would 
have an adjustment factor of 0.0003.  Multiplied by the population this would result in an 
increase of 0.03 fatalities.  By itself this increase would be negligible, but if there were 33 
other areas with the same characteristics there would be a statistical increase of one 
fatality.  Conversely, an area that was already flooded before the dam failure but was not 
hazardous could suddenly become more dangerous due to an increase in DV.  The 
rapidity of the increase in DV should be considered for either case. 
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Figure 1 - Example of a Pre-failure (left) and Post-failure (right) flooding depth-velocity 
grid. 
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Figure 2 - Difference in DV due to dam failure.  Note the highest ΔDV (in orange and 
red) is where there was dry land before, while areas that were wet from normal flooding 
had more modest increases in DV.   
 

● Simulation modeling 
 
Simulation methods use a computer to combine models of dambreak, flood routing, 
warning dissemination, evacuation, and life loss. Safe areas are designated, populated 
zones are assigned warning times and choices regarding means of travel (e.g. by car or 
walking), road and intersection capacities are assigned, and the computer model 
determines how many people are likely to successfully evacuate. Whereas fatality rates 
for Reclamation's notional method are multiplied by the initial population at risk, the 
simulation methods multiply the fatality rate by an estimated fraction of the initial 
population at risk who might be remaining within inundation boundaries at the time the 
flood wave arrives. These fatality rates depend on flood severity and upon an assigned 
shelter survivability category. 
 
Simulation Models 
 
The following is a summary (from the software literature) of the three most commonly 
used simulation programs. 
 
LIFESim 
LIFESim is a spatially-distributed dynamic simulation modeling system developed to 
estimate potential loss of life. It has been formulated to overcome the limitations of the 
purely empirical life-loss estimation approaches; these are detailed by McClelland and 
Bowles [2002] and summarized by Aboelata et al [2003]. LIFESim considers evacuation, 
detailed flood dynamics, loss of shelter and historically-based life loss. LIFESim can be 
used to provide inputs for dam safety risk assessment and to explore options for 
improving the effectiveness of a dam owner’s emergency plans or a local authority’s 
response plans. 
 
LIFESim has been formulated using an underlying development philosophy that 
emphasizes including the important processes that can affect life loss, while depending 
on only readily-available data sources and requiring only a reasonable level of effort to 
implement. Estimated flooding conditions are obtained from an external dam break flood 
routing model. LIFESim can operate in Deterministic or Uncertainty Modes. The 
Uncertainty Mode provides estimates of life loss and other variables relating to warning 
and evacuation effectiveness, as probability distributions. 
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HEC-FIA 
A stand-alone, GIS-enabled model for estimating flood impacts due to flooding used by 
the United States Army Corps of Engineers. The software tool can generate required 
economic and population data for a study area from readily available data sets and use the 
data to compute urban and agricultural economic flood damage, area inundated, number 
of structures inundated, population at risk, and loss of life. These results can be used to 
inform risk assessments within the dam and levee safety programs as well as the Corps 
traditional planning process. All damage assessments in HEC-FIA are computed on a 
structure-by-structure basis using inundated area depth and arrival grids, or hydrograph 
data. The life loss computation contained in HEC-FIA includes consideration of the 
effectiveness of warning systems, community responses to alert, and evacuation of large 
populations. 
 
HAZUS 
The HAZUS Flood Model produces loss estimates for vulnerability assessments and 
plans for flood risk mitigation, emergency preparedness, and response and recovery. The 
methodology deals with nearly all aspects of the built environment, and a wide range of 
losses. The user can evaluate losses from a single flood event, or for a range of flood 
events allowing for annualized estimates of damages. Using the extensive national 
databases that are embedded in HAZUS, users can make general loss estimates for a 
region. These databases contain information such as demographic aspects of the 
population in a study region, square footage for different occupancies of buildings, and 
numbers and locations of bridges. The HAZUS methodology and software are flexible 
enough so that locally developed inventories and other data that more accurately reflect  
the local environment can be substituted, resulting in improved loss estimates. 
 

R22.3 Best Practice for Risk  

R22.3.1 Accounting for Uncertainty 

 
“An explicit treatment of uncertainty forces us to think more carefully about such 
matters, helps us identify which factors are most and least important, and helps us 
plan for contingencies or hedge our bets”. Morgan and Henrion (1990).   

 
From USBR 
“Estimating loss of life from dam failure is an art as much as it is a science. There 
may never be a procedure available that will provide precise and accurate 
estimates of the loss of life that results from failure.” 
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Regardless of which method is used, there is a great deal of uncertainty in all aspects of 
the life loss estimate. While it is the intent of each method to provide accurate and 
consistent estimates of loss of life, this goal is difficult to achieve.  Inherent in any loss of 
life estimating methodology is uncertainty associated with natural variability, dependent 
on chance or luck and arises because of natural and unpredictable variations in the 
performance of the dam under study. The other type of uncertainty is associated with the 
lack of, or error in, knowledge about the behavior of the system under study. 
 
Examples of natural variability uncertainty (aleatory): 

● Does failure occur when impacted area is crowded with people due to special 
event? 

● Are warnings issued before dam failure? 
● Does the failure occur during the light of day or dark of night? 
● Is the warning process effective? 
● Are roadways impassible prior to the arrival of dam failure flooding? 
● Effects of floating debris on flood depths. 

 
Examples of knowledge uncertainty (epistemic): 

● Breach shape, ultimate size, and rate of breach development. 
● Depth of dam overtopping that causes failure. 
● Speed at which the flood travels downstream. 
● The factors that will motivate a particular individual to mobilize (begin 

evacuating). 
● The amount of time from the issuance of a warning to when a particular individual 

mobilizes. 
● The percentage of people who do not evacuate. 
● Flood depths and velocities that will destroy structures. 

 
Communicating risk to decision makers should be as a range, or better yet, as a graphical 
depiction.  Each source of uncertainty needs to be addressed in the analysis by making an 
assumption for the most likely case, and the providing justification for the assumption 
and the likely range of possible values. 
 
Figure 1 is an idealized illustration (the distributions are artificial) of three probabilistic 
loss of life estimates.  The center curve represents a normal distribution of PLL, from 
zero to the PAR, where the best estimated of PLL is the mean and the uncertainty is 
represented by standard deviations around the mean.  The curve on the left is skewed to 
the low end of the PAR, indicating that information leading to the estimate of the PLL 
indicates that either effective evacuation could be achieved or that much of the dam 
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failure flow will not be life threatening.  The curve on the right is skewed to included 
most of the PAR in the PLL estimate, which would indicate both severe life threatening 
flows with little to no warning or opportunity for evacuation.  In all cases the PAR sets 
the upper limit for the PLL.  It should be noted that there is also uncertainty in the PAR 
estimate - which is not illustrated in this conceptual diagram.  
 

 
Figure 3 - Example of a probabilistic loss of life estimation. 

 

 
Appendix A - Definitions  

 
Population at Risk (PAR) 
Population at risk is defined as the number of people occupying the area inundated due to 
dam failure prior to the issuance of any warning or evacuation.  
 
Predicted Life Loss (PLL) 
The portion of the PAR that would be predicted to perish due to a combination of flood 
warning time and intensity of flow.  PLL can be expressed as a best estimate or a 
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probability density function to illustrate the uncertainty.  The PAR represents the 
maximum possible life loss.  
 
Safe Haven 
An area to where members of the PAR can evacuate and avoid the flood wave and 
ensuing inundation.  Safe havens can changes as flood flows change, either due to 
different flood magnitudes or over time during the same flood.   
 
Warning Time  
The time necessary to detect, verify, notify, and disseminate information to the affected 
population regarding the occurrence of a dam failure or hazardous condition. 
 
Detection time 
The time between when the breach occurs and when it is detected.  Detection time can be 
positive if an impending failure is recognized prior to the actual failure or negative if the 
failure occurs prior to detection.   Detection can be by instrumentation, on-site operator, 
video surveillance, or a passerby. Detection time may be greatly influenced by time of 
day or year. 
 
Verification (Decision) time 
The time between when the breach, or impending breach, is detected and the deciding 
official (e.g. operator, manager) initiates the Emergency Action Plan (EAP). 
 
Notification Time 
The time it takes to call down the list of emergency management officials to begin 
alerting downstream residents. 
 
Evacuation Time 
The time it takes for members of the population at risk to evacuate the inundation area 
once warning is received. 
 
Dissemination of Information 
The time it takes for the dam owner’s dissemination of pertinent information to 
emergency management officials throughout the event to aid in emergency preparedness 
or response efforts. 
 
Depth-Velocity (DV) 
The product of the depth and velocity of floodwater.  Used to characterize the severity 
and survivability of flooding.  A DV grid of an inundation area can be output from GIS 
based hydraulic models. 
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