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Abstract:
In the over fifty years of studying and testing the Alternating Current Optimal Power

Flow (ACOPF) there has been a lack of rigorous experimental design for
benchmarking competing approaches. In an effort to motivate better ACOPF
benchmarking and reporting standards for replicable and reliable analysis, we
present an experimental framework and statistical methods that are an
improvement on current practices. We report numerical results from testing the
nonlinear solvers Conopt, Ipopt, Knitro, Minos, and Snopt on various sized test
problems in which we apply various mathematically equivalent AC-OPF
formulations. We run simulations on numerous recorded starting points that
include starting from a previous solution (i.e. hot starts), randomized starting
points, and the solution to a linearized model as an initialization. Our experimental
results indicate a clear advantage to employing a multistart strategy, which
leverages parallel processing in order to solve the ACOPF on large-scale networks
for time-sensitive applications.
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1. Introduction

After fifty years of improving solution techniques to solving the ACOPF, it is
still considered an extremely difficult nonconvex optimization problem and is still
not applied in most market operations and planning. Although the ACOPF
simultaneously manages real power demand with voltage and reactive power
management, the direct current optimal power flow (DCOPF) which is an linearized
approximation of the real power injections has been instrumental in calculating the
locational marginal prices (LMPs) for market operations. These clearing prices are
therefore based on the shadow price for the real power balancing constraint and are
adjusted if the revenues fail to cover bid costs. Even with losses accounted for in the
DCOPF, this optimization approach fundamentally neglects voltage and reactive
power management. As smarter grid controls and technologies are integrated into
the power system, the added value is more quantifiable using the ACOPF. Therefore
the ACOPF can lead to better utilization of resources and support price-based
competition and welfare maximization for a broad class of market activities.

In the over fifty years of studying and testing on formulations, approximation
techniques, algorithmic methods and other modeling aspects of the ACOPF, there
has been a lack of rigorous experimental design for benchmarking competing
approaches. ACOPF studies published to-date often present a solution technique and
claim that the proposed approach is faster, or converges more robustly, compared
to alternatives. These claims are made on limited testing and limited reporting of
the results. Yet, theoretical results are not sufficient proxies of actual algorithm
performance because such general principles often fail to explain real world
outcomes (Johnson, 2011).

Prior studies have been difficult to replicate and compare due to
inconsistencies in reported metrics and lack of publicly available problem sets; see
Castillo and O’Neill (2013) for further details. Therefore future studies could be
more reliable in reporting metrics and replicable in benchmarking standards. In
this study we present a framework for controlled experimental design and
performance benchmarking of solution techniques applied to the ACOPF. We utilize
the same hardware and software platforms to test and measure a sample of
simulations. We use Dolan-Moré performance profiles for ACOPF benchmarking in
order to assess the robustness of a solution technique and the relative speed at
which it converges. This approach has been proven to be insensitive to outliers and
slight error in the results across many samples (Dolan, 2002). The influencing
factors on performance that we consider in this study include: the test problem,
formulation, solver, and initialization.

Page 4



The remainder of this paper is organized as follows: Section 2 addresses
design choices in the computational study; Section 3 discusses performance
benchmarking techniques that are appropriate for analyzing and comparing
computational performance of varying ACOPF solution techniques; Section 4
presents numerical results, and is followed by a brief discussion in Section 5.

2. Experimental Design

In this study we generated a sample of simulations to represent ACOPF
solution techniques that are combinatorial in the formulation, test problem, solver,
and initialization. The type of formulation, solver, and initialization defines a
solution technique. As illustrated in Table 1, the combination of a starting point,
which is determined by the initialization type for a given test problem, along with
the solution technique, uniquely identifies a simulation.

Table 1. Characteristics of a Solution Technique and Simulation Record

Solver (s) Formulation (f) Initialization (i)  Test Problem (p) Starting Point (n(i,p))
Conopt PSV B6 118-bus 1 Sample (B9, per test problem)
Ipopt RSV Uniform 300-bus 100 Samples (Uniform, per test problem)
Knitro RIV Hot 2383-bus 100 Samples (Hot, per test problem)
Minos 2736-bus
Snopt 2746-bus
| | 3012-bus
Solution Technique 3120-bus

Through this factorial approach, we can observe the significance of each
factor, and the interactions among these factors. Therefore we recorded the optimal
solution value, the variable state, the convergence status, and the CPU time for each
simulation. With this experimental design, we addressed common questions about
the performance of a given approach, and fixed the factors irrelevant to the question
at hand.

We reduced variance through:
» Applying common tolerances on the commercial solvers
» Underutilizing system processor and memory resources to circumvent
bottlenecks
» Testing the solution techniques with the same set of starting points for the
sample of simulations
In the remaining subsections, we discuss in detail the types of formulations, test
problems, solvers, and initializations applied in this study.
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Formulations. The ACOPF originated from Carpentier’s reformulation of the
economic dispatch problem based upon the Kuhn and Tucker theorem, otherwise
known today as the Karush-Kuhn-Tucker (KKT) conditions (Carpentier, 1962). The
KKT conditions are necessary and sufficient for a locally optimal solution, but are
not sufficient for a solution to the ACOPF to be globally optimal since the problem is
nonconvex. We present three mathematically equivalent formulations, the polar
power-voltage power flow formulation (PSV), the rectangular power-voltage power
flow formulation (RSV), and the rectangular current injection formulation (RIV), of
the ACOPF with the following notation.

Notation

Sets
N

Parameters

Enm
bnm
P
q%
pmin,
pmax,
gmin,
gmax,
yimin
ymax,
Vr,minn
yhmax,

Vj,minn

Vj,maXn

Variables
Pn

dn

Vn

911

Vrn

VjI'I

Indices
Set of nodes in the network nm

Conductance between nodes nand m

Susceptance between nodes nand m

Real power load at node n

Reactive power load at node n

Minimum active power for generation at node n
Maximum active power for generation at node n
Minimum reactive power for generation at node n
Maximum reactive power for generation at node n
Minimum voltage magnitude at node n

Maximum voltage magnitude at node n

Minimum real part of complex voltage at node n
Maximum real part of complex voltage at node n
Minimum imaginary part of complex voltage at node n
Maximum imaginary part of complex voltage at node n

Active power generation at node n

Reactive power generation at node n

Voltage magnitude at node n

Voltage phase angle at node n, where 8um= 6y — Om
Real part of complex voltage at node n

Imaginary part of complex voltage at node n
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I"n Real part of complex current at node n
in Imaginary part of complex current at node n

The ACOPF is an extension of the power flow problem and is balanced at each
bus n,m of the network N through power flows or current injections that constitute
Kirchhoff’s Laws. The set of phasors representing the complex bus voltages of the
network is the steady-state condition and can be expressed in polar or rectangular
coordinates, as (v, 8,) or v, + j Vi, respectively. The objective of the ACOPF
problem can vary, but is often set to minimize total system cost subject to
operational constraints. We express the objective as the sum of quadratic cost
functions with cost coefficients cz,, i, and con for the real power injections p, at all
nodes nin N:

min Ynen [C2a(Pn)? + Cinpn + con] (1)

The complex power at each bus is defined as s, = p, +jgn, where the reactive power
gn is typically much cheaper than real power p, and therefore not priced. This
objective in equation (1) is equivalent to maximizing market surplus when the real
and reactive power demanded (p9, g9,) is inelastic.

The constraint set for this study is formulated in polar power-voltage power
flows (2a-6a), rectangular power-voltage power flows (2b-6b), or rectangular
current injections (2c-6c¢). The polar power-voltage power flow formulation (PSV) is
the approach most commonly applied in the literature and has the following
constraint set:

Va Y, meN Vim (€um€0S6nm + bnmSinBnm) — pn+ ph= 0, n € N (22)
Va Y, meN Vi (amSinBnm — bpmcos6nm) - qn+ q9n = 0,n € N (3a)
pming < pp < pma, n€ N (4a)
qmin, < qn < @qM3p, n € N (52)
ymin, < v, < ymax, n € N (62)

The rectangular power-voltage power flow formulation (RSV):

Vi meN (gumVim — bamVim) + Vin ), menN (8amVm+ bamV'm) — pn+ pYa= 0, n € N (2b)
Vin ) m eN (GumV'im = bamVim) = Vn Y, meN (8amVm + bumVim) - @n + @9 = 0, n € N (3b)
pring < pp < pmax,, n € N (4b)

qnin, < gn < @M, n € N (5b)

(vmin)2 < (vin)? + (Vin)? < (vm@,;)2, n € N (6b)

The rectangular current injection formulation (RIV):

I'n= Z mEN (ganrm - banjm), ne€ N(ZC)
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In=7Y men (€amVm + bamV'm), n € N (3¢)

Pty < (Vi + Vigiin) 4+ pa < pmax, n€ N (40)
qmin, < (anl'rn - Vrnl'jn) + qdn < gmax, n€ N (5¢)
(vming)2 < (V)2 + (V)2 < (va%,)2, n € N (60)

For each formulation, the equivalent constraints are numbered accordingly;
for a more detailed discussion on ACOPF formulations, see (Cain, 2012). Control
elements such as phase shifters or variable transformer tap ratios are typically
incorporated into the power balancing constraints through modifications to the
admittance matrix, also known as the Y-Matrix Y= G + jB, where gumis the
conductance and bnn is the susceptance from node nto m. In the PSV approach, (2a)
and (3a) are trigonmetric functions. The RSV approach instead has quadratic
functions in (2b) and (3b) which results in a finite and constant Hessian for
derivative-based solvers. The RIV approach solves for the real (i";) and imaginary
parts (#,) of the complex current through linear equality constraints (2c) and (3c).
In constraints (4c) and (5c¢), the relationships vty + Vipin = ppand vipity - Vipiip = qn
are derived similarly to (2a), (3a), (2b), and (3b) through a power-current model.
The real and reactive power injection/withdrawal limits are in constraints (4) and
(5), respectively. The voltage magnitude at the bus is constrained by lower (vmin;)
and upper (vmax,) bounds in (6); the approaches in rectangular coordinates (i.e.
(6b) and (6c¢)) include a non-convex lower bound and convex upper bound.

Test Problems. Table 2 lists the publicly available test problems we use for this
study and the corresponding minimal costs according to the MATPOWER
parameterizations (Zimmerman, 2011). The MATPOWER parameterizations have

Table 2. Characteristics of Test Problems
Test Problem Buses Branches Generators Loads Y-Matrix Density ~ Observed Minimum Cost ($)

I 118 186 54 99 3.519E-02 129,661
II 300 411 69 199 1.247E-02 719,725
111 2383 2896 323 1822 1.440E-03 1,922,928
v 2736 3269 206 2011 1.239E-03 1,307,832
\Y 2746 3279 342 1993 1.234E-03 1,505,109
VI 3012 3572 292 2260 1.119E-03 2,584,227
VII 3120 3693 229 2277 1.079E-03 2,232,988

no angle difference or thermal line constraints, and furthermore do not include
time-varying demand profiles. The models range in the number of generators and
loads, but are unsophisticated in generation representation. Generators are
parameterized with operational ‘box-constraints’ having scalar power limits and a
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quadratic cost function on the real power, but do not include further characteristics
such as ramp rates, startup/shutdown costs, and detailed reactive power capability
curves. Thus we simplify the test problems with multiple generators at a given bus
to a single generator per bus by aggregating the generation and determining the
weighted average cost curve (i.e. the weight is set by the generator nameplate
capacity).

The 118-bus test problem represents portions of the early 1960’s American
Electric Power System in the US Midwest; the 300-bus test problem was developed
in 1993 by the IEEE Test Systems Task Force under Mike Adibi; and the 2736-bus
(summer-peak), 2746-bus (winter-peak and winter-offpeak), 3012-bus (winter-
peak), and 3120-bus (summer-peak) test problems represent the Polish Network
during time periods between 2004-2008. The models vary in connectivity, but are
all extremely sparse according to the Y-matrix density. Although these MATPOWER
parameterized test problems are inadequate compared to real power market
models, they are widely used in academic studies and published on in peer-review
journals; see Castillo and O’Neill (2013) for a detailed summary of the test problems
used in prior studies.

Solvers. We test five commercial solvers using the General Algebraic Modeling
System (GAMS). Without linearizations or convexifications of the ACOPF, nonlinear
commercial solvers can only guarantee local optimality and feasibility. Furthermore,
algorithms behave differently due to numerous factors, including the size,
complexity, and representation of the underlying problem. Below in Table 3 we
provide a sense of the representation of each test problem where the varying
formulations require a different number of nonlinear instructions and nonzero
coefficients.

Table 3. Characteristics of Formulations
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Test Problem Number of
Formulation Nonzero Coefficients  Nonlinear Instructions
118-bus
PSV 2,903 11,391
RIV 4,681 6,158
RSV 3,139 11,447
300-bus
PSV 6,942 24,671
RIV 11,045 14,411
RSV 7,542 26,227
2383-bus
PSV 51,750 180,009
RIV 84,387 105,375
RSV 56,516 198,290
(Table 3 continued)
Test Problem Number of
Formulation Nonzero Coefficients = Nonlinear Instructions
2736-bus
PSV 59,003 209,802
RIV 97,449 120,915
RSV 64,475 230,048
2746-bus
PSV 59,211 210,462
RIV 97,821 121,419
RSV 64,703 230,828
3012-bus
PSV 64,748 229,533
RIV 107,089 133,131
RSV 70,772 252,456
3120-bus
PSV 66,979 237,194
RIV 110,801 137,811
RSV 73,219 261,184

The number of nonlinear instructions and nonzero coefficients for the different
formulations and test problems.

The five commercial solvers included in this study are listed in Table 4. In
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general, default parameterization was adopted. For Minos, the minor and major
damping parameters were set to 0.5 (GAMS, 2012). For both Conopt and Minos, the
default memory settings in GAMS were increased in order to solve the larger
network problems without compilation errors. The parameterizations are available
upon request. In a companion paper, Castillo and O’Neill (2013) performed a more
detailed discussion on nonlinear optimization, these commercial solvers, and a
historical survey of published algorithmic methods applied to the ACOPF.

Table 4. Characteristics of Commercial Solvers

NLP Solver Version Algorithm Convergence Strategy Second-Order (Hessian) Info
Conopt 3 Generalized Reduced Gradient Line Search Exact & Quasi-Newton
Ipopt 3.10 Interior-Point Line Search Exact
Knitro 8.0 Interior-Point/Active-Set Trust Region Exact & Quasi-Newton
Minos 5.51 Augmented Lagrangian Line Search Quasi-Newton
Snopt 7 Sequential Quadratic Program Line Search Quasi-Newton
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Initializations. Effective initialization methods can improve convergence. There is
a fairly large body of literature on ACOPF problems where the authors only report
results from using a flat start!. Instead we consider the BTheta (B0) start, which is a
natural extension to the current injection approach for optimal dispatch. We also
consider statistical initialization methods to assess the robustness of a given
solution technique to solve the problem from varying starting points. In one of the
statistical methods included in this study we determine a set of starting points
through uniformly randomizing the voltage magnitude profile. In the other we
determine a set of starting points using the optimal solution for a given uncertain
demand profile (i.e. hot-start). For each starting point, the power flow constraints
solve for [vs, On, Vi, Vin, Pn, n, I'n, F5] in order to initialize the PSV, RSV, and RIV
formulations similarly. Therefore the initialization is feasible to the equality
constraints (2) and (3) but may be infeasible for the remaining constraint set.

The linearized BTheta start, a type of DCOPF, dispatches real power by
assuming unitary voltage magnitude (i.e. v, = vin = 1 p.u.), negligible resistance (i.e.
gnm=0), and sin6ym = O,m approximation in the real power flow constraint (2);
therefore in the PSV formulation, constraints (3), (5), and (6) are ignored and a
linearized cost function is applied as follows:

min YneN Cinpn (1-lin)

subject to

Y meN bumOnm — pn+ p?h=10,n€ N (2a-lin)
prin, < pn < pma, n€ N (4a)

Omingm < Opm < 0m3,m, n,m € Nfor K€ K (7)

Constraint (7) is included, which limits the angle difference between interconnected
nodes to be less than or equal to an absolute difference of 30-degrees. Losses are
negligible in this formulation. Since the BTheta formulation is a linear program, the
optimal solution to the above problem is the global minimum. Therefore only a
single starting point is tested for the BTheta initialization; the solution time for
solving the BTheta is negligible.

The uniformly randomized start randomizes the initial voltage magnitude at
each node, vY, via a uniform distribution function U(.) on the lower- and upper-
bounds

V0, = U(vmin,, ymax,) n € N. (8)

The phase angle at each node is set to zero. Then the real and reactive power
injections are determined through the power balancing equations (2) and (3).

"In a flat start, the voltage magnitude is initialized to 1 p.u. with zero phasor angle, and the real
and reactive power injections from generators are at half-output of the given lower and upper bounds.
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Therefore constraints (2), (3), and (6) are satisfied, but the real and reactive power
injection constraints (4) and (5) may be violated. We determine 100 starting points
using the uniformly randomized initialization.

Lastly, the hot-start is essentially a converged solution of a perturbation to
the original problem, which could be comparable to a sequential dispatch in real-
time. Therefore this approach initializes the variables with the optimal solution to a
perturbed test problem where the real power load at each node is shifted via a
uniform distribution function within + 10% of the parameterized load

p0, = U(0.9p, 1.1p%) n€ N. (9)

The solution at the real power load p?%, determines the variable initializations to
the original problem which solves for real power load parameter p4,. We determine
100 starting points using the hot-start initialization.

3. Performance Benchmarking

We apply statistical measurements that are widely accepted in the
optimization community to benchmark ACOPF solution techniques. Prior studies in
the optimization community on general nonlinear algorithms have shown that
comparing the number of iterations per solution technique is not an effective
measure of performance; an iteration of one approach is not necessarily comparable
computationally to an iteration of another approach (Bongartz, 1997). Instead, we
determine a performance ratio for each simulation, which is the ratio of the
simulation CPU time in seconds to the best-recorded reference solution. Since
relative performance metrics are normalized, these results are robust against
changes in software platform, operating system, and hardware (as long as the same
environment is utilized across all simulations). These performance ratios are then
analyzed to determine the performance profile and geometric mean of a solution
technique in order to relate design choices in the solution techniques to the
performance measures.

Performance Ratios. Performance ratios are useful in determining relative
performance of a given solution technique compared to another, where a solution
technique is defined as the combination of solver, formulation, and initialization. In
this study we define the following performance ratio

Tstip= tsfip/ t™p (10)

for each simulation as a baseline for comparing results, where the subscripts refer
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to the solver (s), formulation (f), initialization (/) and test problem (p), and the
superscripts refer to the starting point n which is a function of the test problem and
initialization (i.e. n = n(j, p)). The solution technique is denoted as (s, £, i). There are
100 uniform starting points, 100 hot starting points and one BTheta starting point
for each test problem. This is summarized in Table 1, in the beginning of section II.

For each simulation, we define t’sf, as the CPU time in seconds required for it
to converge. If the simulation does not converge, then s is set to the maximum
convergence runtime (i.e. worst-recorded). The minimum recorded CPU time on a
given test problem p is

t* = min{t"ssp: sin S, fE F, i€, n€ N} (11)

This simulation must obtain the minimal cost presented in Table 1. We also refer to
t*, as the reference solution for each test problem, and the performance ratio s
as the 7-Ratio for each simulation instance.

Geometric and Arithmetic Means. We use geometric means of the
performance ratios as a way to assess the solution techniques, and the arithmetic
means for the raw CPU times in seconds. The geometric mean log-transforms the
data, which results in statistical terms that are unaffected by normalization. Also,
this approach dampens the effects of outliers. The geometric mean for solution
technique (s, £ i) is:

Tsi = eXP( Xnp Wp In(Tsfip) / Yop Wp) (12)

Weights, denoted wy, are included to weight simulation results by test
problem since the test problems vary in size and difficulty; assume w, = 1 on all test
problems to determine unweighted metrics. We also calculate the geometric
standard deviation for solution technique s, £ i as follows:

s = exp( X np Wp (In(7sip) — In(Ts))? / Xp wp)/2 (13)

The weights are applied similarly for the arithmetic means. We report the geometric
means and standard deviations on the performance ratios, and the arithmetic means
and standard deviations on the CPU times in seconds.

Performance Profiles. The performance profiles were initially proposed by
Dolan and Mor#é to evaluate the performance of optimization software on a set of
test problems; the authors claim that performance profiling reveals all the major
performance characteristics of a given approach (Dolan, 2002). We extend this
approach to evaluate varying solution techniques to the ACOPF problem on a test
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set of medium- to large-scale networks. The performance profile is a distribution
function of the performance ratios. For the set of test problems in this study, the
performance profile provides insight as to the reliability of the solution technique to
find an optimal solution, and the relative speed at which it converges. Dolan and
Moré prove that performance profiles are insensitive to changes in results on a
small number of problems, as well as being robust against small changes in results
across many problems (Dolan, 2002).

Therefore, the performance profile for a given solution technique (s, £ i) is
defined as the distribution function pss: R—[0,1] for

Psi(T) = (Xp wpcard{n€E N: tsp < T, pE P}) / (Xp wpcard{n€ N: p€ P}) (14)

where card{.} is the size of the set and the starting point n = n(j, p) is dependent of
the initialization and test problem. The test problems are weighted by w,, where
setting w, = 1 for all test problems results in the unweighted performance profile.
At psa( 1), all the performance ratios under consideration are within a t-factor of the
best possible ratio. For example, the value pss(1) is the probability that the solution
technique (s, £, 1) will “win” over all other approaches on the set of test problems.

Interactions. We consider various levels of interactions amongst the solution
techniques (i.e. solver, formulation, initialization) to effectively evaluate the
simulation results. We can then relate the solution techniques to the performance
measures and assess the performance of a given approach. Therefore, in calculating
the means, standard deviations, and performance profiles for solution technique (s,
f, i), we consider the full interaction amongst the factors solver, formulation, and
initialization; we also analyze the results as partial interactions and no interactions.
Partial interactions hold two factors fixed, and aggregates on the third factor. No
interactions holds a single factor fixed, and aggregates on the other two factors.

4. Numerical Results

The simulation instances were implemented and solved on the GAMS 23.6.2
platform, Intel Xeon E7458 2.40GHz, 64.GB RAM, 64-bit Windows Server 2008
Enterprise. Each simulation instance was solved sequentially, with a time limit of 20
minutes. We define a simulation instance uniquely by a given starting point and the
solution technique, which is the combination of solver, formulation, and
initialization method for this study?. Likewise, a given starting point is defined by
the initialization method (i.e. hot start, BTheta start, uniform start) and various
combinations of solver and formulation can be compared on this starting point.

% In section 5 we discuss other factors that influence a solution technique, such as solver
parameterization.
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Below we initially discuss the effects of placing a higher emphasis (through
the weighting functions presented in the previous section) on successful
convergences for the larger test problems. Then we briefly review the results for
both the nonconverging and converging simulations. We then present numerical
results on the performance of simulation instances on the set of unique starting
points. Since the simulation instances were executed sequentially on a given core
and therefore did not contend for computing resources, we assess the potential of a
parallel processing strategy. In conclusion, we further detail solution technique
results where we aggregate the simulation results based on:

(i) solver, formulation, or initialization (“without interactions”)

(ii) solver, formulation, and initialization (“full interaction”)

(iii) solver and formulation, solver and initialization, or formulation and

initialization (“partial interactions”)

N-Squared Weighting Effect. We introduce test problem weights, wy, to serve
as a proxy for the comparative dimension of each test problem. We consider both
weights based on:

(1) the number of nodes squared (N-Squared), and

(2) the number of nodes plus branches (N+K).
However, we only report results for the N-squared weights since both methods
trend consistently. This is because the weighting methodologies are fairly similar, as
shown in Table 5 by the proportional percentage shown in parentheses for each test
problem.

Table 5. Test Problem Weights

Test Problem N-Squared N+K Observed Minimum Cost ($)
118-bus 13924 (0.04%) 304 (0.96%) 129,661
300-bus 90000 (0.23%) 711 (2.24%) 719,725
2383-bus 5678689 (14.33%) 5279 (16.64%) 1,922,928

2736-bus 7485696 (18.90%) 6005 (18.93%) 1,307,832
2746-bus 7540516 (19.03%) 6025 (18.99%) 1,505,109
3012-bus 9072144 (22.90%) 6584 (20.76%) 2,584,227
3120-bus 9734400 (24.57%) 6813 (21.48%) 2,232,988

The value in parentheses is the proportional percentage of the aggregated N-Squared or
N+K term, respectively, across all test problems.

Figure 1 displays the aggregated performance profiles across all simulations.
For distribution functions with cumulative performances less than 100% (i.e. 1 on
the vertical axis), there were nonconverging simulations unaccounted for. The
unweighted and weighted performance profiles show that the unweighted profile is
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optimistically biased towards the smaller test problems. From the weighted
performance profile, we see that many of the nonconverging simulations are those
that were computed on the larger test problems. The larger networks are closer in
size to representing more realistic and practical ACOPF problems. Therefore, in the
remainder of our numerical analysis, we will consider only the N-squared weighted
statistics, but we will also report the unweighted convergences.

Figure 1. Unweighted versus Weighted Performance Profiles

0.6 I I
—©— Unweighted
—&— Weighted
0.5r i
04r B
=, 0.3 i
o
0.2 i
0.1+ ]
0 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Iogmr

Overall performance profiles for the aggregated simulations, displayed in terms of both
unweighted and N-squared weighted performance ratios.

Overall Nonconvergence Summary. Simulation instances that solved to
optimality are reported as successfully converged; no other local optimal solutions
on the test problems were found by any of the solvers. The remaining simulations
are reported as nonconverged (see Table 6). For determining the performance
profiles and t-ratios in later analysis, the CPU time of the nonconverged instances is
set to the maximum time limit of 20 minutes.

The results in Table 6 demonstrate that the solvers generally encounter
different nonconvergence issues. Early termination with a feasible solution is due to
insignificant improvement in the optimal objective function value. Solvers that
terminate with a feasible (practical) solution could be useful in actual operations,
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while solvers that terminated with an infeasible (impractical) solution may be less
useful in actual operations.

Table 6. Simulation Results

Termination Conopt Ipopt Knitro Minos Snopt
Exceeded time limit

Exceeded time limit

with a feasible solution 6.5% 0.9% 6.7% 0.0% 14.4%
Early termination . . . . .
with an infeasible solution 0.0% 0.4% 0.6% 11.4% 0.0%
Early termination

Normal Termination 10.5% 3.4% 0.0% 55.9% 16%
with an infeasible solution ’ ) ’ ’ ’
k/mﬁfatl%%s;gifution 43.8% 72.5% 52.5% 30.3% 60.8%
Total Percentage of 81.6% 74.1% 61.0% 32.7% 75.4%

Feasible

The percentage of the simulations that reported convergent, nonconvergent feasible, and
nonconvergent infeasible results for each solver across the test problems.

Overall Convergence Summary. Given an initialization method, Tables 7-9
report the minimum CPU time to convergence across the simulations for each test
problem; the solver and formulation that achieved this time is also reported.

According to Table 9 the hot starts achieve lower CPU times out as compared
to uniform starts and BTheta starts on each test problem. Therefore the hot starting
points set the reference solution t*; this reference solution indicates the minimum
CPU time attained to solve the test problem to optimality whereas nonconverging
solutions have a CPU time set to the time limit of 20 minutes.

This reference solution is the basis for constructing the performance ratios
(i.e. “tr-Ratios”) that are aggregated into performance profiles in this study (see
Section III). The performance profiles, which are essentially cumulative distribution
functions, and the weighted geometric mean t-Ratios are both unit-less
measurements and indicate performance that is relative to the reference solution
reported below in Table 9. Per test problem, the reference solution is the fastest
recorded CPU time in this study.
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Table 7. Uniform Starting Points

Test Problem Minimum CPU Time (s) Solver Formulation
118-bus 0.3 Knitro RIV
300-bus 0.7 Knitro RSV
2383-bus 46.2 Minos pPSV
2736-bus 53.8 Ipopt RIV
2746-bus 41.6 Ipopt PSV
3012-bus 59.6 Ipopt PSV
3120-bus 49.5 Knitro RSV

The minimum CPU time across uniform starts for each test problem.

Table 8. BTheta Starting Points

Test Problem Minimum CPU Time (s) Solver Formulation
118-bus 0.5 Ipopt PSV
300-bus 1.6 Ipopt PSV
2383-bus 33.7 Minos RSV
2736-bus 33.8 Minos RSV
2746-bus 24.8 Ipopt PSV
3012-bus 79.1 Minos RSV
3120-bus 58.7 Ipopt PSV

The minimum CPU time across BTheta starts for each test problem.

Table 9. Hot Starting Points

Test Problem t*p, Minimum CPU Time (s) Solver Formulation
118-bus 0.1 Conopt RSV
300-bus 0.3 Conopt PSV
2383-bus 10.3 Minos RIV
2736-bus 6.5 Minos RIV
2746-bus 11.3 Conopt RSV
3012-bus 8.4 Knitro RIV
3120-bus 10.1 Conopt RSV

The minimum CPU time across hot starts for each test problem. Note that the recorded
minimum CPU time for hot start is lower than the uniform and BTheta minimum CPU time.
Therefore the minimum CPU times by hot start set the reference solution t*,.

Parallel Processing Model. We first analyze the performance of simulation
instances on a given starting point. Overall, there are 100 unique hot starts, 100
unique uniform starts, and 1 unique BTheta start3 for each test problem; we exclude
the BTheta start from this analysis. Thus for each unique hot and uniform starting

3 The BTheta model is a linear program, where if the linear program has a bounded, feasible
region, then the optimal solution is the global solution. Therefore the BTheta start results in a single starting
point which is at the global solution to the linear program.
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point we record the three lowest CPU times observed for each test problem. Figure
2 aggregates the t-Ratio of these simulations across the set of test problems.

Figure 2 illustrates that for all unique hot starting points, at least three of the
fifteen combinations of solver (i.e. Conopt, Ipopt, Knitro, Minos, Snopt) and
formulation (i.e. RSV, RIV, PSV) converge to optimality. This result indicates that the
100 unique hot starts for each test problem were solved successfully. On the
contrary, the uniform starts indicate the lack of robustness across all combinations
of solver and formulation. The performance profiles in Figure 2 indicate that
regardless of the solver and formulation combination, all simulations failed on
certain uniform starting points.

Figure 2. Lowest CPU Time by Starting Point
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The three minimum CPU times on each starting point for both hot and uniform
initializations. These performance profiles are N-squared on all test problems.

Given that the formulation and initialization are practically supplied for free
by the user, we next analyzed whether one solver proved to be more beneficial than
another. This is of interest since most commercial solvers require licensing and
purchasing agreements. Therefore we assess a multistart strategy* across the
simulation instances where we run the solvers in parallel to solve a given test
problem.

* A global optimization procedure that applies a solution technique for numerous starting points on
parallel threads/processes and then terminates with increasing confidence in a unique optimal solution.
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Since the hot and uniform initializations provide various and numerous
starting points, we assess how each solver would perform with the three different
approaches to formulating the ACOPF as a nonlinear program. For each solver, all
the hot starts across the various formulations would entail a single multistart
approach on a given test problem>. Thus the multistart strategy is assessed across
all available solvers; this strategy could certainly be implemented in a cloud or grid
computing environment where computing resources can be scaled ad-hoc.

In Figure 3 the solid, bold performance profile (i.e. ‘Multistart Strategy”)
illustrates the relative performance to the reference solution (see Table 9) when the
overall multistart strategy is applied. Note that the performance profile of the
multistart strategy in Figure 3 is equivalent to the performance profile ‘Multistart
Strategy’ in Figure 2; this profile consists of hot starts only since the hot starts
resulted in faster times than the uniform starts. The remaining performance profiles
in Figure 3 are for the multistart strategy where a single multistart approach for a
given solver is excluded. By excluding one solve at a time, we are able to gain some
intuition on the marginal impact on the multistart strategy of a particular solver.

Figure 3. Impact of Solver on Parallel Processing Performance
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The multistart strategy performance is illustrated above in bold. The remaining
performance profiles demonstrate the overall performance when a given solver is excluded

> Note that we do not include uniform starting points when considering practical operations
due to its inferior performance, as shown in Figure 2.
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from the parallel processing. These performance profiles are N-squared on all test
problems.

The results in Figure 3 indicate that the most substantial increase in CPU
time occurs when Conopt is excluded from the set. Furthermore, Snopt provides
significant benefits in decreasing CPU time for achieving higher than 80%
convergence probability (i.e. above 0.8 on the vertical-axis). Thus the removal of
either Conopt or Snopt from the parallel processing set would dramatically decrease
the performance of a multistart strategy. However, note that the removal of any
single solver did not result in complete nonconvergence on a starting point;
although there may be nonconvergence when excluding multiple solvers from the
proposed strategy. Thus the proposed multistart strategy is robust for the given hot
starting points included in this study, where certain solvers provide an edge in
decreasing execution time on the set of test problems.

This result suggests that each solver provides added benefit to a parallel
processing strategy. For example, Table 10 indicates the percentage of hot starting
points on which a particular solver attained one of the three minimum CPU times.
These percentages are N-squared weighted to emphasize the increased value in
simulations that converge to optimality on larger test problems. Given that each
solver shared in achieving a minimum CPU time, these statistics evidently indicate
that no solver is strictly inferior to the other solvers for the given hot starting points
in this study.

Table 10. Overall Weighted Percentage of Best Performance by Solver

Conopt Ipopt Knitro Minos Snopt
Ist 13% 25% 12% 1% 49%
2nd 32% 18% 17% 12% 21%
3rd 10% 27% 11% 1% 52%

The highest percentage of best performances across all starting points with hot
initialization. These percentages are N-squared weighted for each test problem.

Results without Interactions. We analyze results where we aggregate
simulation instances by solver, formulation, or initialization method independently.
For example, we can assess the influence of the solver on a given simulation
instance without considering other factors of the solution technique. Therefore
Figures 4 through 6 and Table 11 analyze the solution techniques where the results
are aggregated by the factor of interest within the solution technique.

The weighted geometric means in Table 11 indicate that Ipopt is on average
approximately 39 times slower than the reference solution (see Table 9), but is still
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faster overall than the other solvers. Furthermore, Ipopt and Snopt are fairly
comparable, both being over three times faster than Minos. I[popt and Snopt also
have approximately three-fourths of the simulations terminating with a feasible, if
not optimal, solution. Conopt has both a low weighted arithmetic mean and a low
convergence percentage which indicates that the solver has comparably fast
nonconvergence times. As opposed to slow-running nonconverging simulations,
faster nonconvergence could be useful in freeing up computational resources for

Table 11. No Interactions: Overall Summary

Weighted Geometric Mean  Relative =~ Weighted Arithmetic Mean Unweighted
t-Ratio t-Ratio CPU Time in seconds Convergence
Ranked Solver (Standard Deviation) (Standard Deviation)
Ipopt 389 (3.7) 1.00 365.4 (351.0) 3062/4221 (72.5%)
Snopt 40.6 (4.4) 1.05 358.7 (484.0) 2567/4221 (60.8%)
Knitro 67.9 (3.3) 1.75 479.6 (404.4) 2214/4221 (52.5%)
Conopt 73.2 (3.7) 1.88 156.0 (110.0) 1850/4221 (43.8%)
Minos 127.3 (2.2) 3.28 231.0 (395.9)  482/4221 (11.4%)
Ranked Formulation
RSV 55.8 (4.0) 1.00 249.8 (320.3) 3707/7035 (52.7%)
RIV 56.6 (3.9) 1.01 258.1(316.4) 3734/7035 (53.1%)
PSV 79.5 (3.2) 1.42 446.5 (474.0) 2734/7035 (38.9%)
Ranked Initialization
Btheta 31.4 (3.9) 1.00 652.3 (1393.9) 78/105 (74.3%)
Hot 40.9 (4.6) 1.30 399.2 (503.7) 6164/10500 (58.7%)
Uniform 97.9 (2.4) 3.12 233.7 (122.3) 3933710500 (37.5%)

The relative t-Ratio is determined as relative to the lowest weighted geometric mean for a
given category. The weighted arithmetic mean CPU time includes both converging and
nonconverging simulations where nonconverging simulations are assigned a CPU time

equal to the time limit of 20 minutes.
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Figure 4. Solve Performance Profiles
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A comparison of the multistart strategy to the solvers, regardless of formulation and
initialization used in the solution technique.

queued simulation instances or also could be useful when terminating with a
feasible solution. For example although Conopt has a low convergence rate (see
Table 11), Conopt has the highest rate for nonconverging with a feasible solution
(see Table 6).

Figure 4 compares the multistart strategy performance profile (see Figure 3)
to those of each solver regardless of formulation and initialization method applied;
there is a clear advantage of running the solution techniques in parallel.

Other interesting results to note: although Conopt and Minos set the
reference solution for most test problems (see Table 9), Snopt and Ipopt have more
robust performance. Snopt has a 40% probability of converging within 10 times the
speed of the reference solution (i.e. logiot = 1), and up to a 45% probability of
converging within 100 times the speed of the reference solution (i.e. logiot = 2).
Ipopt has a higher convergence rate than Snopt during the longer runtimes; that is,
when Ipopt has been running more than 25 times slower than the reference
solution.
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Figure 5. Formulation Performance Profiles.
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Performance profiles of formulation methods assessed independently of the solver and
initialization method used in the solution technique.

Figure 5 indicates that the rectangular formulations (RIV and RSV) have
higher convergence and lower CPU time as compared to the polar formulation (PSV)
across all solvers and initialization techniques for the set of test problems.
Accordingly, table 11 reports that the rectangular formulations are nearly
comparable on the test problems, regardless of the solver and initialization used,
and also that the rectangular formulations are approximately 40% faster in
convergence time compared to the polar.

Figure 6 illustrates that the BTheta and hot initializations out-perform the
uniformly randomized starting points. This highlights the significance of selecting
appropriate initialization methods for this problem. Furthermore, these results also
indicate that even commercial solvers are not robust in solving the given set of test
problems when randomized initializations are applied.
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Figure 6. Initialization Performance Profiles
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Performance profiles of initialization methods aggregated regardless of the solver and
formulation in the solution technique.

Results with Full Interactions. We analyze the influence of a given solution
technique on the set of starting points. Therefore we aggregate the simulation
results based on the solver, formulation, and initialization method. This analysis
determines whether certain combinations of solver, formulation, and initialization
perform better than others. Table 12 reports the statistics for the top twenty
solution techniques with the lowest t-ratios; these t-ratios are calculated relative to
the reference solution (see Table 9).
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Table 12. Full Interactions: Overall Summary

Weighted Geometric Mean Relative Weighted Arithmetic Mean Unweighted
t-Ratio t-Ratio CPU Time in seconds Convergence
Ranked Combination  (Standard Deviation) (Standard Deviation)
1 Minos, RSV, Btheta 55(1.5) 1.0 53.7 (20.2) 7/7 (100.0%)
2 Snopt, RIV, Hot 75(1.6) 14 75.3 (56.8) 700/700 (100.0%)
3 Ipopt, PSV, Btheta 9.0(23) 16 102.1 (60.6) 7/7 (100.0%)
4 Ipopt, RIV, Btheta 10.7 (19) 1.9 125.3 (83.9) 7/7 (100.0%)
5 Ipopt, RIV, Hot 10.7 (2.5) 2.0 180.3 (215.2)  680/700 (97.1%)
6  Knitro, RSV, Hot 11.3(3.0) 2.1 181.4 (197.7) 684/700 (97.7%)
7 Minos, PSV, Btheta 13.4 (4.0) 24 353.6 (477.9) 6/7 (85.7%)
8 Snopt, RSV, Hot 146 (3.8) 2.7 381.2 (531.7) 587/700 (83.9%)
9 Snopt, RSV, Btheta 16.4(3.5) 3.0 387.0 (2455.7) 6/7 (85.7%)
10 Conopt, RSV, Hot 20.7(74) 3.8 686.3 (25.1) 440/700 (62.9%)
11 Snopt, RIV, Btheta 23.1(29) 4.2 421.9 (2436.0) 6/7 (85.7%)
12 Ipopt, RIV, Uniform 23.3(2.7) 4.2 384.7 (82.8) 600/700 (85.7%)
13  Conopt, RSV, Btheta 25.4(28) 4.6 377.5 (20.6) 6/7 (85.7%)
14  Snopt, PSV, Btheta 285(4.7) 5.2 662.5 (2858.5) 5/7 (71.4%)
15 Knitro, RSV, Btheta 285(1.7) 5.2 298.2 (172.6) 7/7 (100.0%)
16 Ipopt, PSV, Hot 28.6(5.0) 5.2 663.3 (489.3) 452/700 (64.6%)
17  Snopt, PSV, Hot 29.5(5.0) 54 687.1 (744.5) 430/700 (61.4%)
18 Knitro, Polar, Btheta 463 (2.0) 84 569.0 (403.7) 5/7 (71.4%)
19 Ipopt, Polar, Uniform 494 (3.4) 9.0 780.7 (181.1)  443/700 (63.3%)
20 Conopt, RSV, Uniform 541(29) 98 786.3 (40.3) 426/700 (60.9%)

The top twenty solution techniques according to the t-ratios are reported in Table 12; the
remaining ranks are reported in Appendix A.
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Figure 7. Solution Technique Performance Profiles
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Figure 7 illustrates the performance profiles for the top ten solution techniques that are

listed in Table 12.
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We observe that four techniques exhibit perfect convergence: Minos-RSV-
BTheta, Snopt-RIV-Hot, Ipopt-PSV-BTheta, and Ipopt-RIV-BTheta solve to optimality
for the given starting points on all seven of the test problems. The Minos-RSV-
BTheta solution technique performed on average within 5.5 times the speed of the
reference solution. Comparably, the next in rank, Snopt-RIV-Hot, is 30% slower.

Notably, the Snopt-RIV-Hot solution technique converged perfectly on 700
unique simulation instances (i.e. 100 unique runs per test problem) and performs
on average within 7.5 times slower than the reference solution. According to Figure
7, the Snopt-RIV-Hot solution technique has the probability to converge in 80% of
the simulation instances where the CPU time is within 10 times the speed of the
reference solution; the remaining 20% of simulation instances within 30 times the
speed of the reference solution for each test problem. Interestingly, by switching the
formulation in Snopt-RIV-Hot from RIV to RSV (with all else being equal), the
convergence rate declines by 16% as the execution time doubles.

Table 12 also reports that [popt-PSV-BTheta, Ipopt-RIV-BTheta and Ipopt-
RSV-BTheta converge to optimality for all recorded simulation instances, but Ipopt-
RSV-BTheta had much higher performance ratios and therefore did not make the
top twenty list (see Appendix A). Notably Knitro-RSV-Hot and Ipopt-RIV-Hot
solution techniques converge 97.7% and 97.1%, respectively; but, the Ipopt-RIV-Hot
approach is slightly faster.

Results with Partial Interactions. The analysis in this section aggregates the
simulation results based on two of the three factors comprising a solution
technique. Tables 13-15 present additional results when the simulations are
analyzed on two factors (i.e. solver and formulation; solver and initialization;
formulation and initialization). We include these tables to demonstrate the
difference in performance and convergence characteristics when the results are
partially aggregated.

Note that the lowest t-Ratios occur with full interactions, as illustrated in
Table 12. In fact, the lowest t-Ratios reported in Table 12 is at least 10 times faster
than the t-Ratios reported in Tables 13-15. This result corroborates the assessment
that a multistart strategy that includes the varying solution techniques would out
perform strategies where only one solver and one formulation, as an example, is
applied to solve the test problem.
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Table 13. Solution Technique Aggregated by Solver and Initialization

Weighted Geometric Mean Relative Weighted Arithmetic Mean Unweighted
t-Ratio t-Ratio CPU Time in seconds Convergence
Ranked Combinations  (Standard Deviation) (Standard Deviation)
Snopt, Hot 148@(39) 1.0 404.2 (601.1) 1717/2100 (81.8%)
Minos, Btheta 179 (4.6) 1.2 148.3 (303.1) 16/21 (76.2%)
Ipopt, Btheta 187@(3.2) 13 319.2 (366.7) 21/21 (100.0%)
Snopt, Btheta 221(38) 15 1924.7 (2659.9) 17/21 (81.0%)
Ipopt, Hot 29.2(4.0) 20 475.2 (444.2) 1748/2100 (83.2%)
Knitro, Hot 440(39) 3.0 675.1 (496.6) 1405/2100 (66.9%)
Ipopt, Uniform 522 (33) 35 256.1 (158.0) 1293/2100 (61.6%)
Conopt, Hot 53.4(5.0) 3.6 99.6 (112.7) 992/2100 (47.2%)
Knitro, Btheta 57.8(24) 39 683.4 (458.6) 13/21 (61.9%)
Conopt, Btheta 71.6 (3.0) 49 18598 (31.9) 11/21 (52.4%)
Conopt, Uniform 1004 (23) 6.8 212.1 (72.7) 847/2100 (40.3%)
Knitro, Uniform 105.0 (2.2) 71 282.0 (49.0) 796/2100 (37.9%)
Snopt, Uniform 1124 (20) 7.6 297.5(91.2) 833/2100 (39.7%)
Minos, Hot 113.6 (2.7) 7.7 341.9 (525.2) 302/2100 (14.4%)
Minos, Uniform 145.6 (1.4) 9.9 121.0 (117.3)  164/2100 (7.8%)

Performance metrics of the simulation instances aggregated regardless of the formulation.

Table 14. Solution Technique Aggregated by Solver and Formulation

Weighted Geometric Mean  Relative =~ Weighted Arithmetic Mean Unweighted
t-Ratio t-Ratio CPU Time in seconds Convergence

Ranked Combinations  (Standard Deviation) (Standard Deviation)

Ipopt, RIV 15.8 (2.8) 1.0 163.7 (163.2) 1287/1407 (91.5%)
Knitro, PSV 24.8 (3.7) 1.6 211.4 (152.9) 1152/1407 (81.9%)
Snopt, RIV 32.9 (4.6) 2.1 195.5 (230.1) 906,/1407 (64.4%)
Conopt, RSV 33.4 (5.3) 2.1 93.6 (70.4) 872/1407 (62.0%)
Ipopt, PSV 37.3 (4.3) 2.4 365.2 (383.6) 902/1407 (64.1%)
Snopt, PSV 44.4 (4.0) 2.8 541.7 (640.8) 868/1407 (61.7%)
Snopt, RSV 45.9 (4.4) 2.9 338.9 (422.4) 793/1407 (56.4%)
Conopt, RIV 86.2 (2.9) 5.5 199.2 (98.8) 609/1407 (43.3%)
Ipopt, RSV 99.7 (1.8) 6.3 567.3 (338.2) 873/1407 (62.1%)
Knitro, PSV 100.4 (2.3) 6.4 562.2 (411.1) 570/1407 (40.5%)
Minos, RIV 103.3 (3.2) 6.6 66.7 (85.7) 440/1407 (31.3%)
Knitro, RIV 125.5 (1.7) 8.0 665.2 (430.3) 492/1407 (35.0%)
Conopt, PSV 136.0 (1.7) 8.6 175.2 (124.4) 369/1407 (26.2%)
Minos, PSV 140.0 (1.6) 8.9 588.4 (508.3)  25/1407 (1.8%)
Minos, RSV 142.8 (1.5) 9.1 37.9 (111.3)  17/1407 (1.2%)
Performance metrics of the simulation instances aggregated regardless of the initialization

method.
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Table 15. Solution Technique Aggregated by Formulation and Initialization

Weighted Geometric Mean  Relative =~ Weighted Arithmetic Mean Unweighted
t-Ratio t-Ratio CPU Time in seconds Convergence
Ranked Combinations  (Standard Deviation) (Standard Deviation)
RSV, Btheta 214 (3.2) 1.0 543.9 (1230.0) 33/35 (94.3%)
PSV, Btheta 29.7 (4.2) 1.4 788.6 (1650.5) 25/35 (71.4%)
RIV, Hot 323 (4.5) 1.5 273.6 (419.6) 2363/3500 (67.5%)
RSV, Hot 33.1(4.8) 1.6 283.1 (410.8) 2335/3500 (66.7%)
RIV, Btheta 49.0 (3.7) 2.3 624.4 (1249.4) 20/35 (57.1%)
PSV, Hot 64.1 (3.9) 3.0 641.0 (573.3) 1466/3500 (41.9%)
RSV, Uniform 95.0 (2.4) 4.5 213.6 (138.0) 1339/3500 (38.3%)
RIV, Uniform 99.2 (2.4) 4.7 238.8 (86.9) 1351/3500 (38.6%)
PSV, Uniform 99.5 (2.4) 4.7 248.7 (132.9) 1243/3500 (35.5%)
Performance metrics of the simulation instances aggregated regardless of the solver
applied.

5. Discussion

We argue that future experimental work needs to be more replicable and
reliable. For example, this study presents an experimental framework and statistical
methods that are an improvement on current practices for ACOPF benchmarking
and reporting standards. The computational results are often problem dependent
and therefore it is difficult to extrapolate the reported performance metrics to larger
test sets without further testing.

The experiments indicate that when solving the ACOPF, formulating the
mathematical problem in rectangular coordinates versus polar coordinates results
in faster computational performance and a higher rate of simulations instances that
converge to an optimal solution. Furthermore, the BTheta and hot initialization
methods outperformed the uniform initialization and are most likely to be available
in actual operations. The uniform initialization provided information on whether
the solution technique was robust, that is, converges to a solution from the starting
point.

Out of the commercial solvers tested, the experiments suggest that Ipopt and
Snopt are both robust and relatively fast in determining the lowest system cost
across converged simulations. We adopt mostly default settings for the commercial
solvers; therefore we acknowledge that customizing the solver options instead of
using the default parameters could result in a very different outcome. For example,
setting “bar_directinterval=0" in Knitro enforces direct conjugate gradient steps,
and therefore improves how the algorithm handles nonconvexities; for a more
detailed discussion on algorithmic methods (see Castillo and O’Neill, 2013).
Furthermore, other parameterizations, such as providing the solvers with the
active-set information from the hot initialization, would result in increased
performance. Therefore, aspects on how the solvers are parameterized and
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initialized should be considered carefully when customizing general nonlinear
solvers for specific applications of the ACOPF.

A useful conclusion is the clear advantage of employing a multistart strategy.
In a multistart strategy, various solution techniques are executed in parallel
processes in order to solve the ACOPF on a given network. In a cloud or grid
computing environment where computing resources can be scaled ad-hoc, this
approach would enable an implementation strategy that involves various solvers,
solver parameterizations, initialization approaches, and mathematical
representations or formulations of the ACOPF problem. Our experimental results
show that the lowest system cost could be attained in less than 20 minutes on
networks with as many as 3,120 buses from any hot starting point. Therefore a
multistart strategy could ensure the robustness in determining the lowest system
cost and also increase the probability of determining this operating point, or a
feasible and near-optimal operating point, in much faster than 20 minutes.

Therefore our findings can provide some initial indication of useful
multistart strategies to solving the ACOPF on large-scale networks. A follow-up
study would be needed to address how much solver customization affects
performance, why certain solution techniques behave better than others, and
whether such experimental results can provide more guidance in honing current
ACOPF research endeavors.
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Appendix

Table A. Bottom Twenty-Five: Full Interactions

Ranked Combination

Weighted Geometric Mean Relative Weighted Arithmetic Mean
CPU Time in seconds
(Standard Deviation)

Unweighted
Convergence

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Knitro, RSV, Uniform
Conopt, RIV, Hot
Snopt, PSV, Uniform
Ipopt, RSV, Btheta
Knitro, PSV, Hot
Minos, RIV, Hot
Minos, RIV, Btheta
Ipopt, RSV, Hot
Conopt, RIV, Btheta
Knitro, RIV, Hot
Ipopt, RSV, Uniform
Conopt, PSV, Hot
Conopt, RIV, Uniform
Minos, PSV, Hot
Conopt, PSV, Uniform
Minos, RSV, Hot
Minos, PSV, Uniform
Conopt, PSV, Btheta
Snopt, RSV, Uniform
Snopt, RIV, Uniform
Minos, RIV, Uniform
Knitro, PSV, Uniform
Knitro, RIV, Uniform
Knitro, RIV, Btheta
Minos, RSV, Uniform

765.9 (70.9)
883.3 (26.0)
868.8 (155.2)
730.3 (372.7)
893.6 (447.3)
1131.4 (90.0)
1084.9 (20.8)
817.2 (309.7)
1108.4 (29.9)
1110.2 (325.8)
1223.8 (151.5)
1291.3 (167.1)
1270.4 (19.3)
1305.5 (454.7)
1307.1 (54.3)
1317.6 (132.7)
1320.3 (134.6)
1326.6 (14.6)
1326.6 (15.2)
1326.6 (23.1)
1327.9 (29.8)
1327.2 (13.0)
1327.4 (10.6)
1327.4 (53.2)
1330.1 (85.3)

461/700 (65.9%)
375/700 (53.6%)
433/700 (61.9%)
7/7 (100.0%)
394/700 (56.3%)
281/700 (40.1%)
3/7 (42.9%)
616/700 (88.0%)
3/7 (42.9%)
327/700 (46.7%)
250/700 (35.7%)
177/700 (25.3%)
231/700 (33.0%)
13/700 (1.9%)
190/700 (27.1%)
8/700 (1.1%)
6/700 (0.9%)
2/7 (28.6%)
200/700 (28.6%)
200/700 (28.6%)
156,700 (22.3%)
171/700 (24.4%)
164/700 (23.4%)
1/7 (14.3%)
2/700 (0.3%)

T-Ratio T-Ratio
(Standard Deviation)
54.3(28) 99
55.6 (3.6) 10.1
67.3(2.6) 122
68.0(1.8) 124
70.0 (2.9) 127
73.4 (4.6) 133
781(3.1) 14.2
81.0 (1.7) 147
99.6 (2.5) 181
107.6 (2.0) 19.6
123.2(1.8) 224
1319 (1.9) 24.0
133.5(1.5) 243
139.5(1.6) 254
140.1 (1.4) 25.5
1431 (1.5) 26.0
143.7 (1.5) 26.1
145.1(1.3) 264
1451 (1.2) 264
1453 (1.2) 264
1458 (1.3) 26.5
1458 (1.2) 26.5
146.2 (1.2) 26.6
146.5 (1.2) 26.6
1472 (1.3) 268
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