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Abstract	and	Executive	Summary	
The	goal	of	our	investigation	is	to	gain	some	perspective	on	how	non‐convex	the	
feasible	region	of	the	Alternating	Current	Optimal	Power	Flow	 ACOPF 	problem	is.	
First,	we	will	develop	a	metric	for	comparing	how	infeasible	different	solutions	are.	
The	set‐up	for	this	examination	will	be	to	generate	convex	combinations	of	feasible	
points,	and	determine	how	“far”	these	new	points	are	from	the	feasible	region.	We	
propose	a	metric	based	on	the	relative	two	norm.	This	value	will	be	compared	over	
various	regions	around	the	optimal	solution.	Second,	we	would	like	to	determine	
how	elastic	the	area	around	the	global	optimum	is;	in	other	words,	we	will	
determine	the	largest	range	of	values	the	optimization	variables	can	take,	given	a	
small	perturbation	from	the	global	solution.	In	doing	so,	we	will	find	the	elasticity	of	
all	optimization	variables,	which	could	give	us	insight	into	the	structure	of	the	
feasible	region.	Finally,	we	will	examine	the	two	dimensional	relationships	between	
the	optimization	variables	and	the	objective	function	value.	
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NOMENCLATURE
Indices
n,m Nodes
k Lines
g Generators

Variables
vn Voltage at Bus n
Pg Real Power at Generator g
Qg Reactive Power at Generator g
θn Voltage Angle at Bus n
θnm Voltage difference (i.e. θn − θm)
U Uniform Random Variable
x Vector of Optimization

Variables (i.e. x =
[
θ, V, P, Q

]
)

x(r) Vector of Optimization Variables
from Random Objective Function

x(c) Vector of Optimization Variables
from Convex Combination

Parameters
V min, V max Minimum and Maximum

Voltage Magnitude Vector
Pmin, Pmax Minimum and Maximum

Real Power Capacity Vector
Qmin, Qmax Minimum and Maximum

Reactive Power Capacity Vector
θmin
nm , θmax

nm Minimum and Maximum
Angle Difference Between Bus n and m

cgi ith Order Cost Term for Generator g
Gnmk Electrical Conductance

from Bus n to m along Line k
Note: For our purposes, the transmission lines
are numbered 1 through |K|

Bnmk Electrical Susceptance
from Bus n to m along Line k

Sets
N Set of Nodes
G Set of Generators
K Set of Transmission Lines
S Set of Constraints

I. INTRODUCTION
The problem of finding an optimal power flow solution in

a network proves especially challenging from a computational
standpoint. The ACOPF problem is an example of a non-
linear programming problem over a non-convex feasible region.
Today’s optimization algorithms generally rely on the Karush-
Kuhn-Tucker (KKT) conditions for optimality, but this set of
criteria assumes a convex region. Previous investigation of the
ACOPF problem suggests that the region is suitably convex
[3] for the application of the KKT conditions; however, the
region is in fact non-convex and therefore the KKT conditions
fail to guarantee global optimality. In fact, modern algorithmic
methods still do not guarantee convergence to a global optimum.
One approach that does not rely on the KKT conditions is the
method proposed in [4], which establishes an algorithm based
on semi-definite programming that results in a duality gap of
zero.

In general, it can be shown that there are a large number of
physically feasible load flow solutions [5] and thus numerous
local optima. As a result, the issue of convexity becomes
important for both accuracy and reliability purposes. In this
paper, we establish some basic characteristics of these problems
using the IEEE standard test suite [1] and further contribute to
the discussion of their structure.

The first segment of our investigation focuses on points that
are nearly feasible. In other words, if we examine some convex
combination of two known feasible points, to what degree will
this new point be infeasible, if it is in fact infeasible. Because
the region is non-convex, our expectation is not to find many
feasible combinations; however, if we find only small deviations
from the feasible region, that would support the suitably convex
hypothesis.

The second area of focus is the elasticity of the optimization
variables. Rather than look only at the predefined limits on
the variables, we examine the effective limits. In other words,
what are the extreme values of each variable, such that overall
feasibility is maintained. To refine this search to a meaningful
scope, we only consider feasible points that correspond to
objective function values within one percent of the global
optimum. Therefore, our examination centers on the area around
the global optimum and we seek to establish how flat that region
of the feasible set is.

Finally, we determine the behavior of the optimization vari-
ables across their range of feasible values. In particular, we
will investigate the pairwise relationships between a single
variable’s value and the objective function value. The nature of
these relationships should lend some insight into how changes
in the power flow can affect the subsequent cost, as well as
characterize the relative convexity of the region around the
optimum. Additionally, by iterating through all of the feasible
values for each variable, we should expect to find some local
optima corresponding to those power flow profiles.

II. FEASIBLE REGION OF THE ACOPF PROBLEM

Our procedure is two stage: first, we solve for a global
optimum of the ACOPF problem. A solution is considered
globally optimal in this paper if it satisfies the first order KKT
conditions to a default tolerance of 10−6. Note that this is
a necessary but not sufficient condition for optimality. The
problem is solved in the polar formulation:

min f(x) =
∑
g∈G

cg2P
2
g + cg1Pg + cg0 (1)

s. t. Pn =
∑

m∈N
vnvm(Gnmk cos θnm +Bnmk sin θnm) (2)

Qn =
∑

m∈N
vnvm(Gnmk sin θnm −Bnmk cos θnm) (3)

P ≤ Pmax (4)
Pmin ≤ P (5)
Q ≤ Qmax (6)
Qmin ≤ Q (7)
V min ≤ V ≤ V max (8)

We will refer to the constraint set as S = {(2), (3), ..., (8)}.
In the typical polar formulation of the ACOPF problem, we
would also include line constraints and voltage angle constraints.
However, the IEEE standard test problems are by default not
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bounded by these constraints; the input data for branch and
angle limits are effectively infinite. Therefore, these constraints
are not included in our formulation. The original problem
(1),...,(8) is solved using the solver fmincon in the MATLAB
package MATPOWER (Version 4.1) [2].

Next, in an attempt to quantify how non-convex the feasible
region is, we consider the mid-point of two feasible points and
test it for feasibility. For each of the cases (14, 30, 57, 118, and
300 bus), we substitute the default objective function with a
randomized linear cost function. In other words, (1) is replaced
with the objective function

f(x) =
∑
g∈G

Ucg1Pg (9)

where U is a uniform random variable, and cg1 is the
problem’s default linear cost term. All other cost terms are
ignored. We minimize this objective function over our region
S and obtain a local optimal solution that will be on the
boundary of S, by first order optimality conditions (Procedure
1, Step 1). Next, we examine all of the pairwise mid-points.
To determine feasibility, we calculate the minimum relative
`2−norm of the convex combination and a feasible point from
the set S (Procedure 1, Step 5); a result of zero indicates that
the convex combination is a feasible point. Since the point that
minimizes the Euclidean distance metric is also the minimizer
for the `2− norm, we use it for smoothness considerations. We
examine the relative magnitude in the `2−norm so that our
objective function value serves as a more meaningful metric;
it is easier to compare “how infeasible” different solutions are
when their values are scaled by the optimal values. Our process
is described in Procedure 1.

Procedure 1: Test for Convexity

1. Let (P) denote the optimization problem
minf(x) =

∑
g∈G

Ucg1Pg (10)

s. t. x ∈ S, U ∼ Uniform(0, 2)
2. Solve (P) 100 times
3. Let x(r)

i be the ith solution
4. For each pair of solutions i 6= j

x
(c)
ij = 0.5x

(r)
i + 0.5x

(r)
j (11)

5. Solve the following ∀i, j pairs, i 6= j

min g(x) =
∑
g∈G

(P
(c)
g,ij−Pg)2

|P∗| +
∑
g∈G

(Q
(c)
g,ij−Qg)2

|Q∗| (12)

+
∑
n∈N

(v
(c)
n,ij−vn)2

|v∗|

s.t. x ∈ S
6. Report the values of g(x∗) from (12)

To determine the convexity of the region around the global so-
lution, we set U so that U is drawn from the Uniform(0, 2) dis-
tribution. The results of this procedure are summarized in Table
1. After doing so, we restrict the region to U ∼Uniform(0.99,
1.01). By doing so, we should restrict our randomized local
solutions to a much tighter region of the feasible set. The results
of this change are summarized in Table 2.

Figure 1 illustrates the value we are trying to minimize. In
two dimensions, we would simply try to minimize the Euclidean

distance between the midpoint of two feasible points (f1(x
∗)

and f2(x
∗)) and the feasible set S.

Figure 1. A two-dimensional illustration of the infeasibility metric we seek to
minimize

A. Convex Combination Feasibility

For our convex combination procedure, we report the mean
and median values for each case, and we record the number of
feasible points (objective function value of zero). To give some
notion of how variable the differences are, we also report the
maximum and minimum values of the objective function.

As we can see from Table I, none of the convex combinations
are feasible points when the random variable is drawn from
the Uniform(0, 2) distribution; additionally, there is no obvious
correlation between size of the problem and “how non-convex”
the constraint set is. In fact, the 300 bus case has the lowest
values of our infeasibility metric; this implies that, relative to
the variable values, the convex combinations of 300 bus case
solutions are closest to known feasible points.

Table I
SUMMARY OF MIDPOINT FEASIBILITY TEST RESULTS, WITH RANDOM

VARIABLE U ∈ [0, 2]

Case Mean Median Feasible Points Minimum Maximum
14 0.542 0.512 0 0.29 1.595
30 0.47 0.455 0 0.336 0.823
57 0.66 0.643 0 0.341 1.178
118 1.39 1.335 0 0.648 2.704
300 0.082 0.082 0 0.062 0.105

Next, we restrict the objective function’s variation by intro-
ducing a uniform random variable with a smaller range and
repeat Procedure 1. Our results for the Uniform(0.99, 1.01)
randomized objective function are as follows in Table II:

Table II
SUMMARY OF MIDPOINT FEASIBILITY TEST RESULTS, WITH RANDOM

VARIABLE U ∈ [0.99, 1.01]

Case Mean Median Feasible Points Minimum Maximum
14 0.551 0.522 0 0.292 1.535
30 0.468 0.453 0 0.329 0.806
57 0.686 0.673 0 0.424 1.071
118 1.469 1.466 0 0.501 2.473
300 0.077 0.078 0 0.050 0.103

Restricting the region of points does not have much of
an impact on the mean and median `2−norm. However, the
minimum and maximum difference values do decrease. These



3

results suggest that on average, the midpoint between any two
feasible points will be as infeasible as either point, regardless
of our choice of points. This conclusion may give us some
insight into the shape of S; if the non-convexities of the feasible
region were sharp, then we would see wider variation in the
infeasibility metric as we moved the points closer together.
However, if we produce similar values for different choices
of random variables, then the notion of a flat feasible region
becomes more tractable.

Aside from the midpoint, we look at a more general case of
convex combinations:

x(c) = αx1 + (1− α)x2, α ∈ [0, 1] (13)

Generally speaking, as α approaches 0 (or 1), the convex
combination of variables will become more similar to one of the
two feasible points. Thus, we investigate how our infeasibility
metric changes over different values of α. For this procedure,
we repeat Procedure 1 with U ∼ Uniform(0.99, 1.01), but
replace (11) with (13), and test at the following points: α =
0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45. This test is
performed for the 14 and 30 bus case; we report the following
results in Table III:

Table III
RESULTS FOR INFEASIBILITY TEST AT VARIOUS ALPHA VALUES; MEAN

RESULTS REPORTED FOR THE 14 AND 30 BUS CASES

Mean Infeasibility
α 14 Bus 30 Bus

0.05 0.690 0.574
0.10 0.660 0.553
0.15 0.634 0.533
0.20 0.612 0.517
0.25 0.593 0.502
0.30 0.578 0.491
0.35 0.566 0.481
0.40 0.557 0.474
0.45 0.553 0.470
0.50 0.542 0.468

The results show that the convex combination that varies the
least in our `2−norm is the midpoint. In fact, as the convex
combination favors one point over the other, the combination
actually varies more from the feasible set. This relationship is
illustrated by both the 14 and 30 bus case, with a nearly identical
shape to the plots (Figure 2).

III. ELASTICITY NEAR THE OPTIMAL SOLUTION

Elasticity is a measure of the magnitude of change in a
variable as a result of change in another variable. We will denote
the elasticity in variable y with respect to variable x as:

Ey,x =
∣∣∣∆y/y

∆x/x

∣∣∣ (14)

For the ACOPF problem, we are interested in how greatly
the optimization variables can change while maintaining an
objective function value that is within 1% of the global optimum
(Procedure 2, Step 3). Because the feasible region S is a non-
convex set, we are interested in the elasticity as a measure of

Figure 2. A plot of Alpha level againts mean infeasibility, 14 bus case (top)
and 30 bus case (bottom)
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how flat the area around the global optimum of problem (1)
is; if in fact the area is highly elastic (flat), then it is possible
that the non-convexities of S are not severe enough to force our
algorithms into local optima.

To measure the elasticity, we calculate the absolute difference
between the minimum and maximum values (Procedure 2, Step
4), divided by the magnitude of the optimal value, then divided
by the allowed percentage change in the optimal objective
function value (Procedure 2, Step 5). These problems were all
solved in MATLAB using the non-linear solver fmincon, with
tolerances for costs and constraint violations set at 10−6. These
problems were solved for every bus and every generator. The
data used were the IEEE 14, 30, 57, 118, and 300 bus cases.
Our process is described in Procedure 2.
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Procedure 2: Compute Elasticity

For each case:
1. Solve for the optimal solution of (1)
x∗ =

[
θ∗, V ∗, P ∗, Q∗

]
(15)

2. Find the corresponding objective function value
f(x∗) =

∑
g∈G

cg2P
∗2
g + cg1P

∗
g + cg0 (16)

3. Add new constraint to S
f(x) ≤ 1.01f(x∗) (17)
S′ = S ∪ (17)

4. Solve the new optimization problems
min /max vn (18)
subject to x ∈ S’
min /maxPg (19)
subject to x ∈ S’
min /maxQg (20)
subject to x ∈ S’

5. Compute the elasticities

Evn,f =
vmax
n −vmin

n

v∗
n

/(0.01) (21)

EPg,f =
Pmax

g −Pmin
g

P∗
g

/(0.01) (22)

EQg,f =
|Qmax

g −Qmin
g |

|Q∗
g|

/(0.01) (23)

A. Test Ranges

We report the optimal value, maximum, and minimum value
of each optimization variable for the 14 (Table IV) and 30
(Table V) bus problems. These results correspond to step 4
of Procedure 2 ((18), (19), and (20)). It should be noted that
the default limits for voltage magnitude in the 14 bus case are
[0.94, 1.06], while the limits for the 30 bus case are [0.95,
1.05]. Individual generator power limits were also left at their
default values. These limits were not changed for the sake of
easy replication. Interestingly, we see that while many of these
variables have a wide range, the voltage magnitudes and real
power generally do not span all feasible values, while reactive
power can fluctuate across its entire spectrum. The likely cause
is that reactive power costs are not included in the standard
objective function, which is to minimize the cost of real power.

B. Elasticities

We report the elasticity of our optimization variables for the
14 and 30 bus cases, as calculated in Step 5 of Procedure 2
((21), (22), and (23)) in Table VI.

Summarized in Table VII are the mean and median elasticities
for each of the cases. The median was considered due to the
high frequency of extreme values, which skew the mean. In the
14 bus case, there are particularly glaring discrepencies between
the mean and median power (active and reactive) elasticities.

As we can see from Table VII, each variable has an elasticity
much higher than 1. Reactive power is especially elastic, and is
consistently more elastic than the other optimization variables.
In the 57 bus case, however, reactive power is not significantly

Table IV
THE RESULTS FOR THE TEST OF VARIABLE RANGES FOR THE 14 BUS
CASE; MINIMUM, MAXIMUM, AND OPTIMAL VALUES ARE REPORTED

Variable Minimum Optimal Maximum
v1 0.969 1.06 1.06
v2 0.945 1.041 1.048
v3 0.94 1.016 1.047
v4 0.94 1.014 1.026
v5 0.94 1.016 1.025
v6 0.959 1.06 1.06
v7 0.950 1.046 1.052
v8 0.94 1.06 1.06
v9 0.951 1.044 1.051
v10 0.951 1.039 1.045
v11 0.958 1.046 1.049
v12 0.945 1.045 1.045
v13 0.942 1.04 1.041
v14 0.94 1.024 1.029

P1 156.308 194.327 231.296
P2 19.074 36.719 54.366
P3 1.99E-06 28.737 68.350
P6 2.00E-08 0.0138 48.316
P8 2.00E-06 8.491 59.668

Q1 2.00E-08 0.0234 10
Q2 -29.628 23.681 50
Q3 2.00E-06 24.126 40
Q6 -6 11.529 24
Q8 -6 8.274 24

more elastic than the other variables. In the 118 bus case,
the median range of reactive power is more than 600% the
magnitude of the optimal solution. Despite these large results
for the 118 bus case, we observe that there is not a consistent
trend between size of the problem and elasticity of the variables,
similar to our findings regarding our infeasibility metric. The 57
bus case is the least elastic across all three types of variables,
and the 300 bus case is the second least elastic. We can thus
hypothesize that the size of the problem is not the driver of
variable elasticities, and therefore does not directly affect the
shape of the feasible region.

IV. FIXED-VARIABLE OPTIMIZATION

To determine the isolated affect of one variable on the overall
objective function value, multiple optimization problems can
be solved at various levels, and the changes in cost can be
tracked. For the ACOPF problem, we fixed a single variable
value (Procedure 3, Line 3), and performed the optimization
using that variable as an additional constraint (Procedure 3, Line
5). As an output of this procedure, we will obtain a graphical
representation of the relationship between various levels of the
particular variable and objective function values. This process
was completed for the IEEE 14, 30, and 57 bus cases. For the
purposes of space, we will include a deeper look at the 14 bus
case only. Our process is decribed more fully in Procedure 3:
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Table V
THE RESULTS FOR THE TEST OF VARIABLE RANGES FOR THE 30 BUS
CASE; MINIMUM, MAXIMUM, AND OPTIMAL VALUES ARE REPORTED

Variable Minimum Optimum Maximum
v1 0.951 0.983 1.05
v2 0.951 0.979 1.059
v3 0.961 0.977 1.041
v4 0.961 0.977 1.039
v5 0.955 0.971 1.042
v6 0.961 0.973 1.034
v7 0.950 0.963 1.028
v8 0.95 0.961 1.022
v9 0.955 0.991 1.039
v10 0.951 1.000 1.043
v11 0.955 0.991 1.039
v12 0.954 1.018 1.05
v13 0.95 1.066 1.1
v14 0.95 1.007 1.045
v15 0.951 1.01 1.05
v16 0.954 1.003 1.04
v17 0.95 0.996 1.037
v18 0.95 0.994 1.035
v19 0.95 0.988 1.03
v20 0.95 0.99 1.033
v21 0.95 1.009 1.05
v22 0.951 1.016 1.059
v23 0.95 1.026 1.1
v24 0.95 1.017 1.05
v25 0.968 1.044 1.05
v26 0.95 1.027 1.033
v27 0.983 1.069 1.069
v28 0.963 0.982 1.037
v29 0.962 1.05 1.05
v30 0.95 1.039 1.039

P1 25.624 41.51 61.989
P2 38.768 55.362 79.893
P22 12.114 22.733 34.043
P27 10.058 39.948 55
P23 0.925 16.3 30
P13 0.93 16.206 33.79

Q1 -20 -5.469 81.401
Q2 -20 1.539 60
Q22 -15 33.905 62.5
Q27 -15 31.639 46.347
Q23 -10 7.06 40
Q13 -15 36.445 44.7

Procedure 3: Fixed-Variable Optimization

For each case:
1. Select an optimization variable Pg

(or Qg , vn)
2. Determine the range, RPg

= Pmax
g − Pmin

g ,
of feasible values for the variable

3. Let Pg = Pmin
g + ciRPg for i = 1, ..., 100 (24)

where ci = i/100
4. Add new constraint to S
S′′ = S ∪ (24) (25)

5. Solve the optimization problem (1)
under constraint set S′′

6. Plot objective function value
againts values of Pg

A. Graphical Representations of the 14 Bus Problem

1) Well Behaved Graphs: We first report on the general class
of variables that are “well-behaved”; in other words, they display

Table VI
RESULTS OF ELASTICITY CALCULATION; REPORTED ARE ELASTICITY

VALUES FOR ALL OPTIMIZATION VARIABLES FROM THE 14 BUS (LEFT) AND
30 BUS (RIGHT) CASES

Variable Elasticity
v1 8.57
v2 9.86
v3 10.54
v4 8.46
v5 8.39
v6 9.50
v7 9.73
v8 11.32
v9 9.52
v10 9.08
v11 8.75
v12 9.62
v13 9.54
v14 8.64

P1 38.59
P2 96.12
P3 237.85
P6 350625.54
P8 702.71

Q1 42733.22
Q2 336.26
Q3 165.80
Q6 260.22
Q8 362.59

Variable Elasticity
v1 10.11
v2 11.07
v3 8.16
v4 7.97
v5 8.91
v6 7.45
v7 8.10
v8 7.50
v9 8.51
v10 9.19
v11 8.51
v12 9.40
v13 14.07
v14 9.42
v15 9.80
v16 8.64
v17 8.77
v18 8.59
v19 8.13
v20 8.35
v21 9.91
v22 10.63
v23 14.61
v24 9.83
v25 7.81
v26 8.08
v27 8.07
v28 7.60
v29 8.39
v30 8.57

P1 87.61
P2 74.28
P22 96.47
P27 112.50
P23 178.38
P13 202.77

Q1 1854.24
Q2 5199.19
Q22 228.58
Q27 193.92
Q23 708.18
Q13 163.81

Table VII
SUMMARY STATISTICS FOR OPTIMIZATION VARIABLE ELASTICITIES

Test Case Voltage Power Reactive Power
14 Median 9.51 237.85 336.26

Mean 9.40 70340.16 8771.62
30 Median 8.58 104.48 468.38

Mean 9.12 125.33 1391.32
57 Median 2.88 102.49 243.15

Mean 3.79 101.87 360.35
118 Median 11.02 499.33 676.37

Mean 10.88 57053.86 4228.16
300 Median 7.80 137.19 229.32

Mean 7.46 10712.25 3403.45

smooth relationships between their values and cost and are
generally convex. On the whole, the majority of optimization
variables fall into this category; their values with respect to
the objective function are parabolic with minima at the global
optimum. It should be noted that for visualization purposes,
infeasible points (or points that failed to lead to a convergent
solution) are designated with objective function value of 1.5f∗,
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which serves as effectively infinite. For the inset graphs, we
observe a “bucket” shape; this effect is caused by the values
falling outside the feasible region. A “well-behaved” variable
generally had a shape similar to Figure 3.

Figure 3. Real Power at Generator 2 plotted against Objective Function Value.
The inset of the graph represents a plot over the full range of feasible values;
the larger graph is a “zoomed-in” region focused on the 1% neighborhood of
the optimal objective function value.
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There are interesting observations to be made about the
power, reactive power, and voltage profiles. The real power,
since it is the driver of cost in the objective function, seems to
have a very strong correlation with cost. Since our cost terms
are quadratic, it makes sense that over the full range of values
real power has a parabolic relationship to cost.

Reactive power, on the other hand, is rather flat. Conversely
to real power, reactive power is not a factor in the objective
function; the flat relationship we see corresponds well to our
earlier findings regarding the highly elastic nature of reactive
power values. However, the interesting aspect of the reactive
power graph is that it appears quadratic in the immediate
neighborhood of the global optimum. This behavior lends itself
to a convex relationship.

Like reactive power, voltage magnitude is also flat, which
should be expected given its absence from the objective func-
tion. Unlike real power and reactive power, voltage magnitude
does not display an even, symmetric curvature around the
optimal value. Rather, most buses display a relatively flat
curvature with voltage levels that are below optimal, while
voltage magnitudes that are too high increase the cost almost
exponentially. Also, it is interesting to note that, like in Figure
3, most voltages have their optimal value at the higher end of
their feasible range.

2) Irregular Graphs: Some variables display irregular behav-
ior with respect to cost, particularly in the form of infeasibile
points within the standard bounds. An examples of this can be
seen in Figure 4:

In the case of power at generator 1, our algorithms find a
single feasible point when power is fixed at 83% of its upper
bound. However, between the 79th and 82nd percentage level,
we fail to achieve convergence. In particular, our non-linear
solver failed to converge after 400+ iterations and 10,000 func-
tion evaluations, while the 83% level converged in 8 iterations.
This specific irregularity has no ready explanation.

For bus 12, the optimal solution is strictly less than the upper

Figure 4. Graphs of Reactive Power at Generator 1 Plotted Against Objective
Function Value.
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bound (1.06 in this case), yet is infeasible when pushed beyond
the optimal value. In fact, with a 0.1% perturbation in the
positive direction, our non-linear solver fails to find a solution
after 500 iterations. It is unclear what aspect of the network
topology contributes to this infeasibility.

V. CONCLUSIONS
At the conclusion of our investigation, we see no strong

evidence to suggest that the ACOPF problem is nearly convex.
However, many of our observations suggest that the problem
has some convex properties, but too many irregularities to be
considered reasonably convex.

Across every problem in the IEEE test set, we fail to find any
feasible convex combinations of feasible points. Additionally, if
the convex combination favors one point over the other, we find
that our infeasibility metric increases. This result suggests that
not only is the region non-convex, but very immediately so. If
we look at our elasticity results, we see that our optimization
variables can vary greatly without having a significant impact
on the objective function value.

Combining this characteristic with our feasible point explo-
ration, we can conclude that the region is globally flat but
locally very dynamic for any constricted region. Our results
lend support to the frequent observation of local optima; because
the area around the true optimum is flat, solvers may quickly
converge to values close to the optimum. However, the local
topology would make it very easy for the solver to find a
feasible, sub-optimal point and declare optimality.

Finally, our visual examination of the pair-wise relationships
between variable values and cost suggest that many variables
display smooth quadratic behavior, at least in the neighborhood
of the optimal solution. However, the presence of some highly
irregular points and behavior indicative of local optima contra-
dicts the claim that the variables are convex in nature.
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