Enhanced Flexible Ramping Product: Design and Analysis

Mojdeh Khorsand Hedman, Assistant Professor Mohammad Ghaljehei, Ph.D. Student

Arizona State University (Tempe, AZ)

June 2020

Overview of the presentation

Motivation

 Part I: Enhancement of day-ahead flexible ramping products (FRPs)

• Part II: A data-driven FRP policy design for addressing the deliverability issue in real-time markets

Research motivation

Evolving markets

| Evolving resources

Research objective

To investigate flexibility procurement: flexible ramping product requirement and deliverability

Increased need for ramping capability

Increased intermittency due to variable energy resources (wind, solar), both bulk and distributed resources:

- Ramping shortage
- Generation-demand imbalance, need for out-of-market corrections
- Market inefficiency

- <u>ISO-NE</u>: Flexibility needs will likely increase with distributed renewable energy penetration due to steeper and longer ramps [1]
- <u>CAISO</u>: The ISO needs ramping capability that can be utilized to meet the sharp changes in electricity net load [2]

^[1] ISO-NE, "Flexibility Procurement and Reimbursement," June. 2017.

^[2] CAISO, "Flexible Ramping Product FAQs," Fall 2016.

What is flexible ramping products (FRPs)?

• Reserved upward and downward ramping capacity procured at t to meet the net demand forecast plus upward and downward uncertainty at t+1.

Upward ramp need at t [1]: FRup_t = max{NetLoad_{t+1}^{max} - NetLoad_t, 0}

Downward ramp need at t [1]: FRdown_t = max{ $NetLoad_t - NetLoad_{t+1}^{min}$, 0}

Motivation: CAISO's market enhancement

Day-ahead market enhancement [1]

- Focus of Part I
- □ Add FRPs to CAISO day-ahead market.
- Propose a framework to ensure that hourly day-ahead schedules can meet 15-min ramping needs.

Real-time market enhancement [2]

Deliverability of FRPs in real-time market.

[1] CAISO, "2020 Draft Three-Year Policy Initiatives Roadmap and Annual Plan," Sep-2019. [Online]. Available: http://www.caiso.com/Documents/2020DraftPolicyInitiativesRoadmap.pdf.

[2] CAISO, "Flexible Ramping Product Refinements," November 2019. [Online]. Available:

http://www.caiso.com/InitiativeDocuments/IssuePaper-StrawProposal-FlexibleRampingProductRefinements.pdf.

Part I: Enhancement of day-ahead flexible ramping products (FRPs)

Resource Scheduling with Enhanced Flexible Ramping Product: Design and Analysis

 Feasibility of CAISO's DA FRPs design for intra-hour 15-minute variability and uncertainty

Focus: Enhance DA FRPs design to accommodate both hourly and intrahour 15-minute variability and uncertainty

Hourly FRPs constraints

☐ Capacity constraints

$$p_{g,t} + ur_{g,t} \le P_{g,t}^{max} u_{g,t},$$

$$\forall g, t$$

 $ur_{g,t}$: Hourly ramp up provision of unit g at time t

 $p_{a.t}^{g,c}$: Power generation of unit g at time t

■ Ramping constraints

$$ur_{g,t} \leq Ramp_g u_{g,t}$$
,

$$\forall g, t$$

 $Ramp_g$: Hourly ramp rate of unit g

☐ Hourly requirement constraints

$$\sum_{g} ur_{g,t} \ge FRup_t,$$

$$\forall t$$

 $FRup_t$: Hourly ramp up requirement at time t

^{*} Above formulation is for the ramping up product; the ramping down product is symmetric.

Intra-hour 15-minute FRP constraints

Ramping constraints

$$ur_{g,t}^{ih} \leq Ramp_g^{15}u_{g,t}$$
,

 $\forall g, t \quad \begin{aligned} ur_{g,t}^{ih} &: 15\text{-min ramp up provision of unit } g \text{ at time } t \\ Ramp_g^{15} &: 15\text{-min ramp rate of unit } g \end{aligned}$

Immunization of hourly ramp up product against 15-min variability and uncertainty

$$ur_{g,t}^{ih} \leq ur_{g,t}$$

 $\forall g, t$

15-min requirement constraints

$$\sum_{\forall g} ur_{g,t}^{ih} \geq \max(\operatorname{FRup}_{t_{0min}}^{ih}, \operatorname{FRup}_{t_{15min}}^{ih}, \operatorname{FRup}_{t_{30min}}^{ih}, \operatorname{FRup}_{t_{45min}}^{ih}), \forall t$$

 $FRup_{t_{0min}}^{ih}$, $FRup_{t_{15min}}^{ih}$, $FRup_{t_{30min}}^{ih}$, $FRup_{t_{45min}}^{ih}$: Intra-hour 15-min ramp up requirements at time t

- Goal of the additional constraints:
 - Improve quantity determination of FRP for next markets without adding too complexity to the problem

 Enable more consistency between day-ahead and real-time scheduling frameworks

Validation methodology

To validate the proposed model:

– We developed a real-time unit commitment (RTUC) process similar to CAISO's model:

- Four binding intervals are considered for each trading hour.
- Commitments of long-start units are fixed
- Fast-start units can be committed to follow the realized net load

The DA solutions are tested against different operational states (out-of-sample testing)

Results: Test case & assumptions

- Test case: IEEE 118-Bus System
- Confidence level: 95% for hourly and 15-min requirements
- 500 out-of-sample scenarios:
 - Based on 15-min net load uncertainty
 - Each scenario includes net load for 96 intervals
- Violation in the form of load shedding was allowed: VOLL: \$10000/MW
- Two bids for generation units in RTUC:
 - Same as day-ahead
 - %15 increase compared to day-ahead

Results: 118-Bus System

FS: Fast start

In 99.8% of scenarios the proposed method provides pareto optimal solutions with respect to cost and violation

Results: 118-Bus System

Operating cost versus Increased number of 15-min commitments of FS units in RTUC

Scens. With viol- Scenarios with occurrence of violation **Scens. Without viol-** Scenarios without occurrence of violation

Concluding Remarks: part I

- The proposed model enhances the quantity allocation of FRPs with minimal disruption to existing day-ahead market models
- The proposed approach leads to:
 - □ Less expected final operating cost in the fifteen-minute market
 - Decreasing the potential violation in real-time operation (need for less out-of-market corrections)
 - Less need for committing fast-start units in real-time operations

Part II: A data-driven FRP policy design for addressing the deliverability issue in real-time markets

State-of-art approaches for ramping needs

- Contemporary market structure: assign FRP awards based on system-wide or proxy ramping requirements
 - □ Cons: awarded FRPs my not be deliverable

$$\sum_{g \in G} ur_{g,t} \ge FRup_t$$

$$FRup_{t} = max\{NetLoad_{t+1}^{max} - NetLoad_{t}, 0\}$$

 $FRup_t$: system-wide or proxy ramping requirements

- Two-stage stochastic programs: Improves operations by optimizing system response, e.g., ramping activation
 - Pros: explicitly checks to see if the ramping capability awards are deliverable for each scenario
 - Cons: computational burden and market implications

Proposed data-driven FRP design:

- Goal: Enhanced FRP design policy by:
 - Predicting flexible resource responses to ramping events considering their deliverability
 - Assigning deployable FRP awards to responsive resources (e.g., not located behind transmission bottlenecks)

FMM: Fifteen-minute market

Data-driven stage: general structure of the machine learning algorithm

Goal: To assess deployability of FRP of various generation resources and to allocate FRP effectively

- Data mining algorithm: Neural network regression function
- Determine ζ_{gts} that approximates response of a unit due to netload changes
 - Target: Per unit dispatch change of each generator at each time interval due to flexibility provision
 - Features: Net-loads and net-load changes
 - Instances: 15-min net load scenarios

Data-driven stage: Inputs to Neural Network algorithm

☐ Features used by neural network algorithm: *net-load* and *net load changes*

No		Feature	Inputs	mathematical notation
1	Netload information	Netload	1	NL(t)
2		Netload (1 15-min before)	1	$NL(ext{t-1})$
3		Netload (2 15-min before)	1	$NL(ext{t}2)$
4		Netload (3 15-min before)	1	NL(t-3)
5		Netload (1 15-min after)	1	NL(t+1)
6		Netload (2 15-min after)	1	NL(t+2)
7		Netload (3 15-min after)	1	NL(t+3)
8	Change in netload information	Delta netload	1	$\Delta NL({ m t})$
9		Delta netload (1 15-min before)	1	$\Delta NL(ext{t-1})$
10		Delta netload (2 15-min before)	1	$\Delta NL(ext{t-2})$
11		Delta netload (3 15-min before)	1	$\Delta NL(au - 3)$
12		Delta netload (1 15-min after)	1	$\Delta NL(t+1)$
13		Delta netload (2 15-min after)	1	$\Delta NL(t+2)$
14		Delta netload (3 15-min after)	1	$\Delta NL(t+3)$

Proposed data-driven FRP design:

- Deliverability: Enhanced FRP design policy that employ ramping response factor sets (ζ_{gts}^{fru})
 - Capacity and ramp constraints:

$$fru_{gt}^{s} \leq ur_{g,t}$$

$$fru_{gt}^{s} \geq \zeta_{gts}^{fru} RR_{g}^{15min}$$

$$\sum_{g \in G} fru_{gt}^{s} \geq \Delta NL_{nts}$$

Transmission line constraint for post-deployment upward FRP:

Set of constraints for downward FRP is symmetric

Process flowchart for the proposed datadriven FRP design

Results: Enhanced FRP allocation (quantity and location)

Results for FMM market and real-time operation over all time intervals

Annroach	Contemporary	Proposed			
Approach	policy	policy			
FMM operating cost (K\$)	1171	1175			
Real-time operating costs					
Ave (K\$)	2328	2199			
Standard deviation (K\$)	812	754			
Max (K\$)	6134	6126			

 Number of scenarios with improvement over all time intervals in real-time operation (total number of scenarios = 350)

Metric	
# Scenarios with cost (excluding violation cost) improvement	350
# Scenarios with total violation improvement	233
# Scenarios with reduction in total commitment of FS units	331

Results: Enhanced FRP allocation (quantity and location)

 Reduction in number of additional commitment of fast start units versus total violation improvement for 350 scenarios

Concluding Remarks (part I and II)

- The Enhanced FRP policy improves the quantity allocation and deployability of FRPs with minimal disruption to existing dayahead and real-time market models
- The proposed approach leads to:
 - Less operating cost in real-time operation
 - Less number of potential violation in real-time operation and less need for out-of-market correction
 - □ Less need for committing fast-start units in real-time operations

Thank you!

