

Market Implications of Reserve Deliverability Enhancement with the Application to Short-term Reserve

FERC Technical Conference on Increasing Real-Time and Day-Ahead Market Efficiency and Enhancing Resilience through Improved Software June 23-35, 2020

Fengyu Wang, Midcontinent Independent System Operator Yonghong Chen, Midcontinent Independent System Operator

Outline

- Overview of MISO 30-minute short-term reserve (STR)
- Zonal and nodal STR models
- Market implications of zonal and nodal STR models
- Penalty function design

30-Minute Short-Term Reserves Produce Price Signals and Improve Commitment Process

Background

- MISO has load pockets with limited importing capability and insufficient quick start units
- MISO has a requirement to restore import flow violation within limit under the largest contingency event in 30 minutes
- System-wide 30-minute flexibility needs

Motivation

- To improve commitment and dispatch process related to load pockets, regional dispatch transfer (RDT), and market-wide reliability needs
- Improve transparency of costs associated with short-term reserve needs
- Enhance reliability by aligning operational needs and market models

STR constraints reflect resource and system requirements

Resource Level Constraints

- Resource capacity
- Maximum cleared STR from single resource
- 30-minute ramp rate

System-wide Constraints

- System-wide requirement
- Post-event power balance constraint
- Post-event reserve deliverability constraints

Zonal and Nodal Short-term Reserve Models

Reserve Deliverability Can Be Improved by Post-event Constraints

Post-event power balance constraint

- Zonal / nodal STR deployment
- Ensure post-event power balance

Post-event reserve deliverability constraints

- Capture post-event power flow with the consideration of loss of generation and co-optimized zonal / nodal STR deployment
- Improve reserve deliverability with consideration of postdeployment transmission constraints for each of the largest zonal contingency events

Post-STR Deployment Deliverability Constraints

Zonal model

$$Baseflow_{i} + \text{Event}_{e} * Sens_{i,e} - \sum_{z} \text{STRResponse}_{z,e} * Sens_{i,z}^{STR} \leq Limit(SP_SC_{i,e}^{ZSTR})$$

 Event Impact Post-Event STR Deployment Impact Based on Zonal Sensitivities

Nodal model

$$Baseflow_i + \text{Event}_e * Sens_{i,e} - \sum_{z} \text{STRResponse}_{n,e} * Sens_{i,n}^{STR} \leq Limit(SP_SC_{i,e}^{NSTR})$$

Event Impact

Post-Event STR Deployment Impact
Based on Nodal Sensitivities

- Index n represent node n, index z represents reserve zone z, index r represents generating resource r, index i represents post STR deployment deliverability constraint r
- Baseflow_i is the pre-contingency flow

Optimal Deployment Constraints

Constraint s	Zonal Model	Nodal Model
Post-STR deployment power balance constraint	$\sum_{z} \frac{STRResponse_{z,e}}{(SP_PB_e)} = Event_e$	$\sum_{n} \frac{STRResponse_{n,e}}{(SP_PB_e)} = Event_e$
Maximum STR deployment constraint	$STRResponse_{z,e} \leq ZonalSTR_z$	$STRResponse_{n,e} \leq NodalSTR_n$
System wide STR requirement	$\sum_{z} \frac{\text{ZonalSTR}_{z,t}}{\text{ZonalSTR}_{z,t}} \ge \text{Systemwide } STRReq$ (\omega)	$\sum_{n} \frac{\text{NodalSTR}_{\mathbf{z}}}{\text{NodalSTR}_{\mathbf{z}}} \ge \text{Systemwide } STRReq$ (\omega)
Dynamic Requirements	$\sum_{r \in z} (OnlineSTR_r + OfflineSTR_r) \ge ZonalSTR_{z,t}$ (ϕ_z)	$\sum_{r \in n} (\text{OnlineSTR}_r + \text{OfflineSTR}_r) \ge \text{NodalSTR}_z$ (ϕ_n)

Nomenclature

Index n represent node n, index z represents reserve zone z, index r represents generating resource r STRResponse_{z,e,t} is the reserve deployment in response to event e from zone z STRResponse_{n,e,t} is the reserve deployment in response to event e from node n

Contingency Analysis- Nodal Model Has Less Violation

On average, the nodal model improves reserve deliverability by 12.6% for constraints across zones. Nodal modal can also address deliverability for constraints within a zone.

Market Implications of Zonal and Nodal STR Models

Market Clearing Prices

$$LMP_{n,t}^{ZSTR} = \lambda + \sum_{i \in I} SP_SC_i^{ENERGY} Sens_{i,n} + \sum_{i \in ISTR} \sum_{e \in SSTR} SP_SC_{i,e}^{ZSTR} Sens_{i,n}$$

Energy congestion component

STR congestion component

Congestion component

Congestion component

Nodal Model

 $MCP_n^{STR} = \varphi_n = \omega + \sum_{e \in E} SP_PB_e + \sum_{i \in I} \sum_{STR} SP_SC_{i,e}^{NSTR} Sens_{i,n}$

 $LMP_{n,t}^{ZSTR} = \lambda + \sum_{i \in I} SP_SC_i^{ENERGY} Sens_{i,n} + \sum_{i \in I} \sum_{e \in \mathcal{E}^{STR}} SP_SC_{i,e}^{NSTR} Sens_{i,n}$

System-wide component

Energy congestion component

STR congestion component

Nodal model produces nodal

Example Result: the period that has the most STR payment

Units 76 and 77 receive \$0/MWh and are cleared with 0MW in nodal model. Their nodal sensitivities are 0.13.

Units 76 and 77 are cleared with 117MW each and received \$257/MWh in zonal model. There zonal sensitivity is -0.23.

Penalty Function Design

Penalty Function Can Significantly Impact STR Prices

$$Baseflow_{i} + \text{Event}_{e} * Sens_{i,e} - \sum_{z} \text{STRResponse}_{z,e} * Sens_{i,z}^{STR} \le s_{i,e}^{PED} + Limit$$
 $SP_SC_{i,e}^{STR}$ $\sum_{z} \text{STRResponse}_{z,e} = s_{i,e}^{PB+} - s_{i,e}^{PB-} + \text{Event}_{e}$ SP_PB_{e}

Penalty function design 1: Penalize the total violations from all events. May overstate the value of the constraints given reliability requirement only requires covering single event.

$$pf = \sum_{i} \sum_{e} \Psi_{i,e}^{PED} s_{i,e}^{PED} + \sum_{e} \Psi^{PB} (s_e^{PB+} + s_e^{PB-})$$
 SP_PF^{STR}

Penalty function design 2: Penalize the worst violations from all events. Align the value of the constraint with the reliability requirement

$$pf \ge \sum_{i} \Psi_{i,e}^{PED} s_{i,e}^{PED} + \Psi^{PB} (s_e^{PB+} + s_e^{PB-})$$
 $SP_PF_e^{STR}$

 $\Psi_{i,e}^{PED}$: the penalty cost for post-event STR deployment constraint Ψ^{PB} : the penalty cost for power balance Constraint

Improper Penalty Function Design May Overvalue the STR Product

Takeaways

- Nodal STR model produces nodal STR prices while zonal STR model produces zonal STR prices.
 - On average, the nodal model improves reserve deliverability by over 12 percent.
- More research should be done in events selection.
 - Currently model the largest event from each zone.
- Post-event constraints are considered inter-zonal
 - Nodal model should be able to bring more benefits with intrazonal constraints
 - More intra-zonal constraints modeled may increase the computational complexity
- Penalty function design can significantly impact the market clearing prices of STR.
 - Proposed penalty function design to avoid overvaluing transmission constraints.

Questions?

Appendix

The STR Design

STR qualified resources

- Online generators
- Offline quick-start generators
- Demand response

Reserve offer

- Online resources: no offer (opportunity cost)
- Offline resources: offer cost

Ramp rate and capacity

- STR resource ramp rate is shared full ramp rate available to all products
- STR capacity can overlap with ramp product and Contingency Reserves

Primal	Dual Constraints		
Variables	Design 1	Design 2	
$s_{i,e}^{PED}$	$SP_SC_{i,e}^{STR} - \Psi_i^{PED} \kappa^{STR} \le 0$	$SP_SC_{i,e}^{STR} - \Psi_i^{PED} \kappa_e^{STR} \le 0$	
S_e^{PB+}, S_e^{PB-}	$ SP_PB_e - \Psi^{PB} \kappa_t^{STR} \le 0$	$ SP_PB_e - \Psi^{PB} \kappa_{e,t}^{STR} \le 0$	
pf	$SP_PF^{STR} = 1$	$\sum_{e} SP_{-}PF_{e}^{STR} = 1$	

Slack Variable and Dual Constraints

Design 1
$$SP_SC_{i,e}^{STR} \le \Psi_i^{PED}$$
 and $|SP_PB_e| \le \Psi^{PB}$

Design 2
$$\sum_{e} SP_SC_{i,e}^{STR} \le \Psi_i^{PED}$$
 and $\sum_{e} |SP_PB_e| \le \Psi^{PB}$