

Transmission Constraint Management at ISO New England

Slava Maslennikov, Xiaochuan Luo, Eugene Litvinov Business Architecture and Technology Department

Introduction

- Existing Transmission Constraint Management has been built incrementally over decades for traditional power systems
- Dramatic changes in operational environment
 - Increasing level of uncertainty and complexity
 - Higher penetration of intermittent resources
 - Fundamental change in generation mix
 - Greater security challenges for the Electric grid that blends physical grid, communication, hardware and software
- Operating uncertainties of the future grid
 - Extended set of contingencies (uncertainties)
 - The increasing probability of cascading events
 - The increasing impact of more frequent extreme weather events
- All these trends require significant changes in the Transmission Constraint Management. This presentation discusses four areas of the improvement

Shifting from Reliability-based to Risk-based dispatch. Online Cascading Analysis as a practical approach

Need to look beyond N-1 security

- Traditional dispatch is based on N-1 security concept and preventively mitigates thermal, voltage and stability violations assuming 100% probability of contingency
- Applying the same approach for N-k, k>1 is prohibitively expensive
- "Violation" itself does not indicate actual risk to the system, such as MW of lost generation and load
- N-k, k>1 events can be secured by using risk-based approach

Risk = Impact_of_event x Probability_of_event

- *Impact_of_event* can be expressed as MW of lost generation and load
- Only high-risk N-k events need to be mitigated
- Online Cascading Analysis is a practical way of estimating *Impact_of_event* and identify high-risk initiating N-k events

Example of a Risk-based dispatch

Online Cascading Analysis (OCA)

- OCA is used to *dynamically* identify high-risk N-k contingencies
 - Need to mitigate only these contingencies in addition to N-1
 - Integrated with the ISO-NE EMS and runs 24/7
- Identified by the OCA high-risk contingencies are mitigated via regular dispatch*
 - "N-1 stuck breaker" and N-2
 - N-k with elevated probabilities related to weather conditions

* Mitigation is not implemented yet in the existing pilot OCA process

OCA Data Flow

OCA Display

OCA Statistics on MW Outages

- Estimated MW impact of critical N-2 and Stuck Breaker initiating events
- Statistics for July 18-24, 2019

Extreme Weather Impact Monitoring

Extreme Weather Impact (EWI) Monitoring

- The tool performs real-time weather impact assessment, including predicting future equipment outage probabilities due to severe weather conditions, using:
 - Weather data on wind, ice-rain, lightning, etc.
 - ISO operational data, including network topology, load flow, etc.
 - Fragility curves of transmission structures (towers and conductors)
 - Machine learning models to account for uncertain impact factors.
- The tool calculates the probabilities of
 - N-2 and "Stuck breaker" contingencies
 - Identifies N-k, k>2 with elevated probabilities
- The calculated contingency probabilities and identified N-k are fed into the OCA process

Main Methodologies for Computing Failure Probabilities –Structural Failures

- Conditional failure probabilities of the power transmission equipment subject to weather conditions
 - Develop fragility curves based on the finite element models of transmission structures (towers and conductors)

- Train deep learning models with utility outage data to study other factors such as tree trimming schedules.
- Collaboration with university civil engineering experts.

9-Hour Look-Ahead EWI Assessment (Hurricane Sandy, 12/29/2012)

Online Calculation of Interface Limits

14

....

Objective

- Interface limits are used as a proxy transmission constraint to enforce the stability-, voltage- and N-1-1 thermal-based limitations
- Majority of stability- and voltage-based limits are calculated offline (months before the real-time)
 - Thermal limits are typically calculated once a day
- Issues
 - Potential inconsistency in modeled and actual real-time system state creates inaccuracy in limits
 - Offline calculated limits are typically conservative
 - A lot of effort to account for uncertainties in offline studies
- Solution: online calculation of as many as possible interface limits

Challenges

- Deficiencies of Real-Time EMS model for voltage and stability studies
 - Lack of modeling of sub-transmission and distribution parts
 - Lack of dynamic data (available in planning model)
 - Lack of modeling of external areas for dynamic studies
- Software tools
 - Multiple commercial tools can be used for online studies
 - Powertech Labs VSAT and TSAT are the ISO-NE tools of choice
 - "Black box" dynamic models from the PSSE planning model should be converted to standard models for the use in TSAT

16

 Operators' Concern of being overly-dependent on the automated tools for the limit calculation and losing the skills doing it manually when the software is unavailable

VSAT Implementation: steady-state limits

- Online calculation of voltage-based N-2 limit for Connecticut interface was implemented in 2016.
 - Complex design with five scenarios including 2D nomograms
 - Accumulated experience and lesson learned
- Future plans
 - Extend for other voltage-limited interfaces
 - Add calculation of thermal N-1-1 limits
 - Optimize EMS VSAT interaction to make the setup flexible and scalable to serve ISO-NE needs

TSAT Implementation: stability limits

 The framework to use TSAT with EMS model has been established

- The framework is used for
 - Pilot calculation of stability interface limits; run cycle 15 min
 - Online Cascading Analysis; run cycle 3-5 min
- Future plans
 - Staged implementation of online calculation of stability limits.
 Easy to implement limits come first.
 - Systematic identification and elimination of obstacles for online calculation of stability limits
 - Development of adaptive, PMU-based dynamic equivalent for the external system

Existing Dynamic Equivalent

- Number of generators in the Eastern Interconnection (EI) model > 8,000
- DYNRED software was used to create equivalent of EI beyond NYISO
 - Equivalent preserves modal structure of inter-area oscillations
 - Modal structure changes over time and a static equivalent is not always accurate to model inter-area oscillations for Study Area (ISO-NE)

Desired Dynamic Equivalent

- Each of 17 tie-lines between NYISO and EI is replaced by a Transfer Function (TF)
 - -Input for TF: measurements from ISO-NE or NYISO
 - -Output of TF: MW and Mvar flow in tie-line
- TF is periodically updated online by using PMU measurements
- TF can be modeled as User Defined Model in TSAT

Transmission Operating Guide Formalization

Transmission Operating Guide (TOG)

- TOG is a paper document defining a process (type of lookup table) to select stability-based interface limit value as a function of power system state.
 - Number of stability TOGs ~200
 - TOG is created offline by converting results of stability studies into a type of lookup table
 - TOG limit is used as a transmission constraint

ISO	england Services Technical Le	TOG – Stability Guide Owner Services Technical Lea © ISO New England Inc. 2019		Revision Number: 8 Effective Date: Apr Valid Through: Apr	
Tab		k – New England Interface,			
Equip OOS	Contingency	Related Facilities/Interface	Required Actions	Reasons for Required Actions	
	New Brunswick 5	New Brunswick – New England Interface	Base transfer limit MW.	To prevent system split in Northern Maine,	
		Chester SVC In-service with	Add MW to base transfer limit.	Or To prevent unacceptable Maine transient voltage	
		New Brunswick largest load	Add MW to base transfer limit.	sag.	
			The final New Brunswick – New England Interface stability transfer limit must not exceed		

Deficiency: TOGs are paper documents not allowing automated translation of limits into other processes using TOGs

- Significant manual efforts to use TOG's limits in other processes
- A possibility of different interpretation of TOG by different people

Formalized Description of Limits in TOG

• A developed structure allows representing any existing paper TOG in a digital format, including data and logical conditions

Calculation of Limit

For any power system state:

Step 1: Calculate values of Conditions c_j , j = 1, ..., n

Step 2: Find the row *i* which has $f_i = TRUE$. Set *i=0* if all $f_i = FALSE$

 $f_i = \begin{cases} TRUE, & \text{if } m_{ij}^{\min} < c_j < m_{ij}^{\max} & \text{for } j = 1, ..., n \\ FALSE, & \text{otherwhise} \end{cases}$

Step 3: Calculate limit value

$$Lim = \begin{cases} \min\{(l_i + \sum_{j=1}^{j=n} c_{ij} \cdot a_{ij}), b_i\} & \text{for } i \neq 0\\ 99999 & \text{for } i = 0 \end{cases}$$

Fully formalized process allowing automated calculation

Use of TOGs

Old process

New process

- Drastic improvement efficiency of the TOG utilization.
- Automated conversion of TOG-related study results (hundreds) into TOG structure by using the Decision Tree technology.

Conclusion

- Future Electric Grid with an increasing level of uncertainty and complexity calls for significant changes in the Transmission Constraint Management
- The Risk-based operations provide a unified framework for reliability and resilience metrics
- Online Cascading Analysis is a practical approach to measure the impact of initiating events including the events caused by severe weather conditions
- Moving offline calculation of interface limits online is an efficient way to manage uncertainties

Questions

