

Economic Interpretation of Demand Curves in Multiproduct Electricity Markets

Feng Zhao

Principal Analyst

Tongxin Zheng

Technical Director

Eugene Litvinov

Chief Technologist

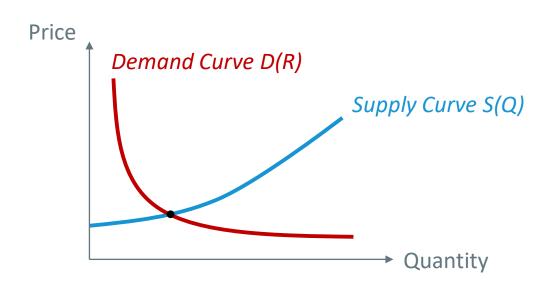
Demand Curves in Electricity Markets

- Reliability products such as reserves and capacity in electricity markets lack demand-side bids due to the public-good nature of reliability
- ISOs/RTOs often model the demand of a reliability product by a fixed requirement (with constraint-violation penalties), or the administratively-set demand curve
- Demand curves are gaining traction as ISO/RTO markets are moving away from fixed requirements

2

Fixed Requirement vs. Demand Curve

Fixed Requirement with Penalty	Demand Curve
One or several penalty values	A price-quantity function
Constraint-based	Product-based
Mainly for Feasibility (high penalty for constraint violation)	Mainly for Pricing (no concept of violation)


• It is tempting to view demand curves as a simple upgrade of penalty *values* to more sophisticated penalty *functions*, ignoring the fundamental shift from the **constraint-based violation costs** to the **product-based economic benefits**

Proper economic interpretation of demand curves is critical!

Demand Curve Interpretation Of a Single Product

 For a market with a single reliability product or the product is independent of others, the monotonically decreasing demand curve represents the product's marginal reliability benefit

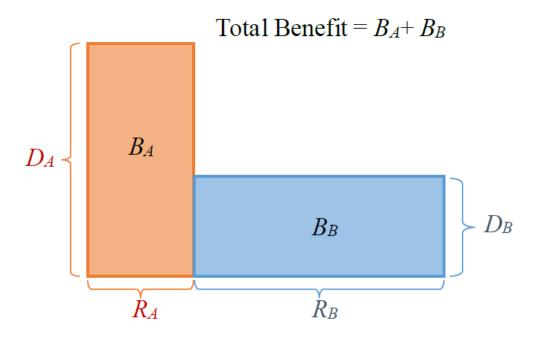
The market clearing objective:
$$maximize \int_{0}^{R} D(R)dR - \int_{0}^{Q} S(Q)dQ$$

Demand Curve Interpretation of Coupled Products

- A reserve or capacity market usually involves multiple coupled products, e.g., spinning and non-spinning reserves, local and system capacities
- The typical coupling relation is "substitution", i.e., a highquality product A (e.g., spinning reserve or local capacity) can be used to substitute a low-quality product B (e.g., nonspinning reserve or system capacity)
- The interpretation of demand curves associated with coupled products has not received much attention, as discussions have been focused on the choice of demand curve parameters

A Stylized Two-Product Market Model

- Consider a two-product market with the high-quality product A and the low-quality product B
- The supply quantities of the two products are Q_A and Q_B , while the demand quantities of the two are R_A and R_B
- The substitution of product A for product B can be represented by:


$$Q_A \ge R_A$$

$$Q_A + Q_B \ge R_A + R_B$$

Demand Curve as The Marginal Benefit of Individual Product – Interpretation I

• An extension of the single-product demand curve interpretation: Product A's demand curve $D_A(R_A)$ represents A's marginal reliability benefit, and Product B's demand curve $D_B(R_B)$ represents B's marginal reliability benefit

ISO-NE PUBLIC

The total benefit of the two products is the sum of individual product benefits

Market Clearing Under Demand Curve Interpretation I

$$\min_{Q_A,Q_B,R_A,R_B} C_A(Q_A) + C_B(Q_B) - \left[\int_0^{R_A} D_A(R) dR + \int_0^{R_B} D_B(R) dR \right]$$
Total Cost

Total Benefit (TB)

s. t.
$$Q_A \ge R_A$$
 (λ_A) $Q_A + Q_B \ge R_A + R_B$ (λ_B) $Q_A \in \Omega_A$, $Q_B \in \Omega_B$ R_A , $R_B \ge 0$.

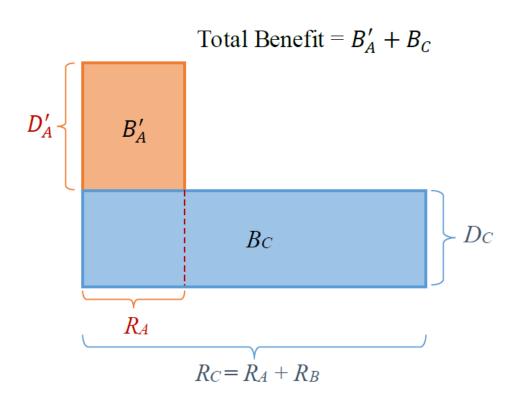
 λ_A and λ_B are multipliers associated with corresponding constraints

Market Clearing Prices Under Interpretation I

Market Clearing Price (MCP) for each product is defined as the derivative of the optimal objective cost with respect to the perturbation of corresponding demand, i.e.,

$$MCP_A \equiv \lambda_A + \lambda_B.$$

 $MCP_B \equiv \lambda_B.$


- Assuming problem convexity, the optimality conditions of the clearing problem yield $D_A(R_A^{opt}) = \lambda_A + \lambda_B$, $D_B(R_B^{opt}) = \lambda_B$.
- Therefore,

$$D_A(R_A^{opt}) = MCP_A$$
, The demand curve interpretation is consistent with the

market clearing price

Demand Curve as Additional Benefit of One Product Over Another – Interpretation II

 The Total Benefit (TB) can also be formed as the basic benefit of both products providing low-quality service, plus the additional benefit of the high-quality product A

Demand curve D_C represents the "basic" marginal benefit of both products

Demand curve D'_A represents the "additional" marginal benefit of the high-quality product A over the basic marginal benefit.

Market Clearing Under Demand Curve Interpretation II

$$\min_{Q_A,Q_B,R_A,R_C} C_A(Q_A) + C_B(Q_B) - \left[\int_0^{R_A} D_A'(R) dR + \int_0^{R_C} D_C(R) dR \right]$$
Total Cost

Total Benefit (TB)

s. t.
$$Q_A \ge R_A$$
 (λ_A') $Q_A + Q_B \ge R_C$ (λ_C) $Q_A \in \Omega_A$, $Q_B \in \Omega_B$ R_A , $R_C \ge 0$.

• λ_A and λ_C are multipliers associated with corresponding constraints

Market Clearing Prices Under Interpretation II

Market Clearing Prices (MCP) for the products are defined as

$$MCP_A \equiv \lambda_A' + \lambda_C,$$

 $MCP_B \equiv \lambda_C.$

- Assuming problem convexity, the optimality conditions of the clearing problem yield $D_A'(R_A^{opt}) = \lambda_A'$, $D_C(R_C^{opt}) = \lambda_C$.
- Therefore,

$$D'_A(R_A^{opt}) = MCP_A - MCP_B,$$
 $D_C(R_C^{opt}) = MCP_B.$

The demand curve interpretation is consistent with the market clearing price

12

Summary of Two Demand Curve Interpretations

- The two different compositions of the Total Benefit (TB) lead to demand curves with different interpretations
 - TB as the sum of individual product benefits (Interpretation I)
 - TB as the sum of basic product benefit and the premium benefit of the high-quality product (Interpretation II)
- Each interpretation is also associated with a corresponding market clearing formulation
- The two interpretations are generally inequivalent

Comparison of Demand Curve Interpretations

 The two total benefit compositions are equivalent if and only if the basic benefit demand curve function Dc is constant

Composition I
$$\int_{0}^{R_{A}} D_{A}(R) dR + \int_{0}^{R_{B}} D_{B}(R) dR = \int_{0}^{R_{A}} D'_{A}(R) dR + \int_{0}^{R_{A}+R_{B}} D_{C}(R) dR, \quad \forall (R_{A}, R_{B})$$

$$\Leftrightarrow D_{c} \text{ is constant}$$

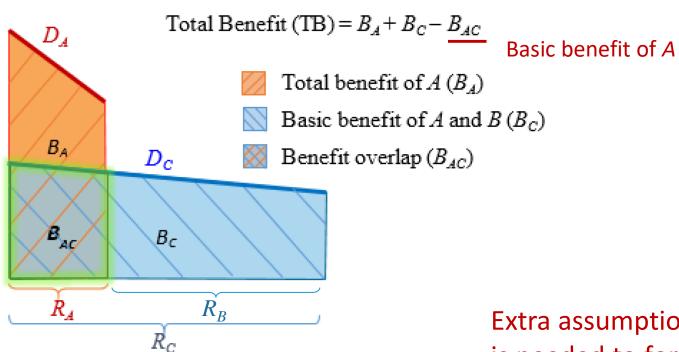
 One demand curve representation can be equivalently translated into another if and only if Dc is constant:

$$D_A'(R_A) = D_A(R_A) - D_C$$

Choice of Demand Curve Interpretation

- Under both demand curve interpretations, the total benefit is considered to be additively separable in terms of R_A and R_B under Interpretation I, and R_A and R_C under Interpretation II
- In reality, the multi-variate total benefit function may not be separable
- The choice of demand curve interpretation could depend on whether the total benefit composition under the interpretation is a good approximation of the actual benefit function, and the complexity of constructing and clearing the demand curves under a particular interpretation

15


Practical Implications

- The construction of demand curves and the use of them in market clearing must be consistent with their economic interpretations
- In practice, the demand curves simply evolved from fixed requirements without recognizing their economic meaning may not fit exactly into either of the two interpretations
 - A typical situation under fixed requirements has a requirement R_A for the high-quality product A, and a total requirement R_c for both products A and B
 - In transition to the demand curves, the market is presented with a demand curve $D_A(R_A)$ for high-quality product A, and a demand curve $D_C(R_C)$ for the total basic benefit of both products

BLIC 16

The Form of Total Benefit (TB)

• The two benefits (integrals of the two demand curve functions D_A and D_C) has an overlapped area B_{AC}

Extra assumption on B_{AC} is needed to form TB

$$TB = \int_0^{R_A} D_A(R) dR + \int_0^{R_C} D_C(R) dR - B_{AC}$$

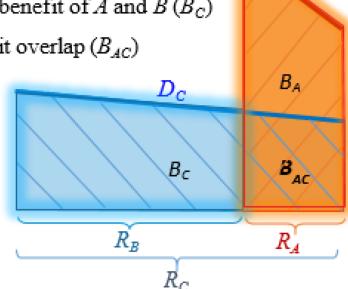
D-NE PUBLIC 17

Assumption I on B_{AC}

• B_{AC} (benefit of B, i.e., $B_C - B_{AC} = \int_0^{R_B} D_C(R) dR$) is associated with the low (high) part of the total basic benefit function B_C

$$B_{AC} = \int_{R_C - R_A}^{R_C} D_C(R) dR$$

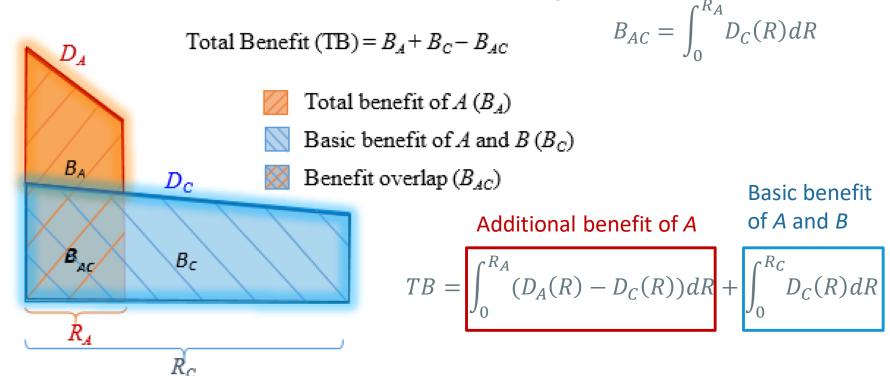
$$Benefit \text{ of } A \quad Benefit \text{ of } B$$


$$TB = \int_{0}^{R_A} D_A(R) dR + \int_{0}^{R_B} D_C(R) dR$$

Total Benefit (TB) = $B_1 + B_C - B_{AC}$

Total benefit of $A(B_A)$

Basic benefit of A and $B(B_C)$


Benefit overlap (B_{AC})

 D_A and D_C , respectively, represent A and B's marginal benefits (Interpretation I)

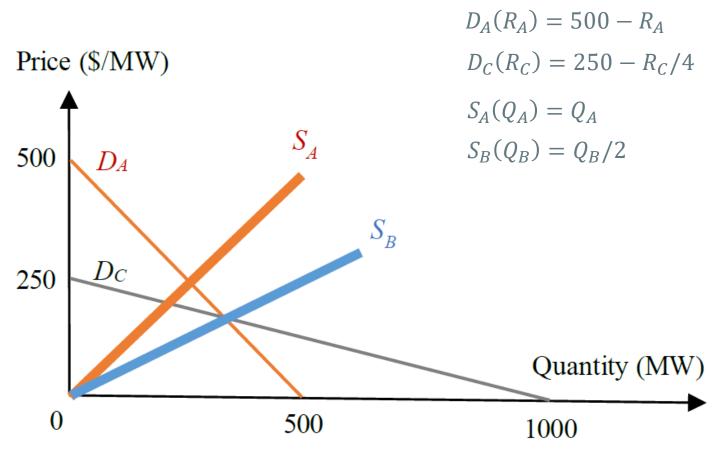
Assumption II on B_{AC}

• B_{AC} (benefit of B, i.e., B_C - B_{AC}) is associated with the **high** (low) part of the total basic benefit function B_C

 $D'_A \equiv D_A - D_C$ represents A's additional marginal benefit, and D_C represents the total basic marginal benefit (Interpretation II)

Compare the Assumptions on B_{AC}

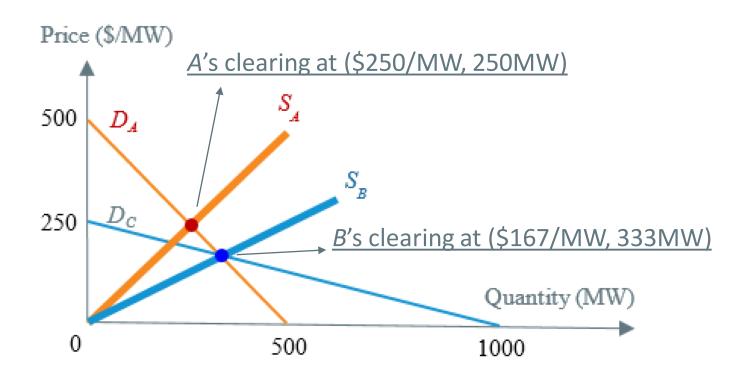
$$TB = \int_0^{R_A} D_A(R) dR + \int_0^{R_C} D_C(R) dR - B_{AC}$$


Basic benefit of A

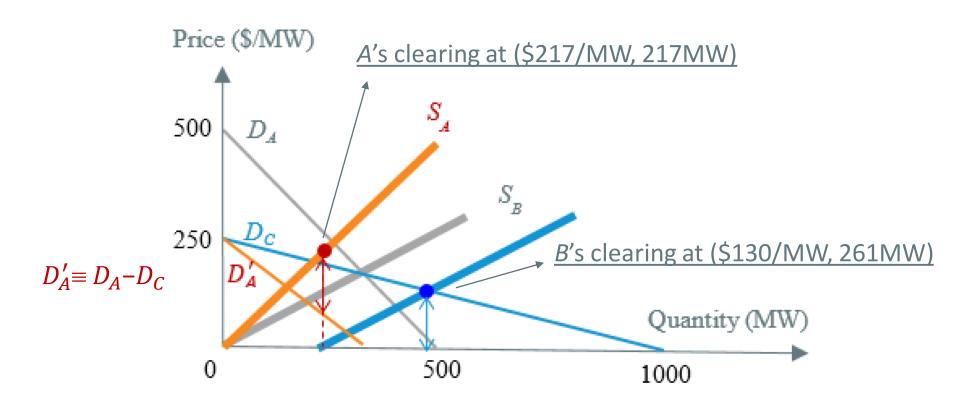
Assumption I	Assumption II
B_{AC} is associated with the low part of the total basic benefit function B_C	B_{AC} is associated with the high part of the total basic benefit function B_C
$B_{AC} = \int_{R_C - R_A}^{R_C} D_C(R) dR$	$B_{AC} = \int_0^{R_A} D_C(R) dR$
$TB = \int_0^{R_A} D_A(R) dR + \int_0^{R_B} D_C(R) dR$	$TB = \int_0^{R_A} (D_A(R) - D_C(R)) dR + \int_0^{R_C} D_C(R) dR$
D_A and D_C , respectively, represent A and B 's marginal benefits (Interpretation I)	$D_A' \equiv (D_A - D_C)$ represents A's additional marginal benefit, and D_C represents the total basic marginal benefit (Interpretation II)

The two assumptions converge when D_c is constant

An Illustrative Example


 Consider a two-product market with demand and supply curves illustrated below

ISO-NE PUBLIC


21

Clearing Under Assumption/Interpretation I

• High-quality product A clears at the intersection of S_A and D_A , with a higher intersection price than that of the intersection of S_B and D_C (Low-quality product B's clearing point)

Clearing Under Assumption/Interpretation II

• The clearing occurs $S_A(R_A) - D_A'(R_A) = S_B(R_B) = D_C(R_A + R_B)$, i.e., by increasing R_A the marginal surplus reduction from S_A and D_A' equals the marginal surplus gain from S_B and D_C

Comparison of Results under Two Assumptions

Assumption/Interpretation I	Assumption/Interpretation II
Demand benefit of B associated with high-part of total basic demand curve D_C	Demand benefit of B associated with low- part of total basic demand curve D_C
$Q_A^* = R_A^* = 250MW, MCP_A = \$250/MW$	$Q_A^* = R_A^* = 217.4MW$, $MCP_A = \$217.4/MW$
$Q_B^* = R_B^* = 333.3MW, MCP_B = $166.7/MW$	$Q_B^* = R_B^* = 260.9 MW, MCP_B = $130.4 / MW$
Total Surplus = \$104,166.7	Total Surplus = \$86,956.5

- Assumption-I with a higher valuation of product B leads to more cleared quantity of the product
- The total surplus under Assumption-I is higher due to less counting of the overlapped basic benefit of product A
- Different demand curve assumptions/interpretations lead to drastically different clearing results – Important to have clear interpretations!

Conclusion

- In the transition from constraint-based penalty factors to product-based demand curves, a proper interpretation of demand curves is fundamental to forming the demand benefit and social surplus, especially with multiple coupled products
- Using a two-product market, we reveal two different interpretations of the demand curves, each associated with a specific form of the market clearing, implying that the construction of demand curves and the use of them in market clearing must be consistent with their interpretation
- The practical impact of this work is demonstrated by analyzing a market with a demand curve for the high-quality product and a demand curve for the total basic benefit of both products

25

For Further Reading

- F. Zhao, T. Zheng, E. Litvinov, "Constructing Demand Curves in Forward Capacity Market," IEEE Transactions on Power Systems, March 2017, Vol.33, No. 1, pp. 525-535.
- F. Zhao, "Real-time Reserve Demand Curves (RDC)," FERC Technical Conference, Jun. 25-27, 2019
- F. Zhao, T. Zheng, E. Litvinov, "Economic Interpretation of Demand Curves in Multi-product Electricity Markets," (to appear on *IEEE Transactions on Power Systems*) [Available] http://www.optimization-online.org/DB FILE/2020/02/7613.pdf