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Common hypothesis:
• Traditional electricity markets fail under 

large-scale penetration of wind and solar
• Wind and solar have zero marginal cost

• Prices collapse and costs are not recovered in 
the long run

Our main result:
• All plants recover their costs in (perfect) 

energy-only markets with wind and solar
• Holds true with and without energy 

storage
• Think twice before embarking on complete 

re-design of electricity markets
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Prediction of Future Price Impacts of VRE 

Projected generation 
portfolios usually not in 
economic equilibrium!

Mills et al. , 2020
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Investments in Variable Renewables and Storage

• Investments in variable renewable energy (VRE) and energy 
storage (ES) have been driven, in part, by incentive schemes
– Feed-in tariffs/premiums, auction schemes, carbon pricing, net metering 

(Europe)
– Production and investment tax credits, renewable portfolio standards, 

net metering, energy storage mandates (United States)

• Rapid reduction in costs for VRE and ES
• How do these technologies influence thermal generation 

investments and market equilibrium in a competitive market?
– Schmalensee, MIT (2019), Joskow, MIT (2019)
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System Optimality and Market Equilibrium
• Most electricity markets are based on marginal cost pricing
• Gives the optimal solution for the system in theory

– System demand is met at minimum costs
– All GenCos (price-takers) maximize their profits and recover their costs 

(Green 2000, Stoft 2002)
• We assume energy-only markets

– Scarcity pricing ensure cost recovery of peaker (and all other) plants
– No explicit capacity remuneration mechanism considered

• They do influence market outcomes and prices (Kwon et al. 2019)
– No direct incentive schemes for VRE and ES

• Competing on equal terms with other technologies
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System Cost Minimization Problem
min
𝑥𝑥𝑖𝑖

𝐶𝐶 = ∑𝑖𝑖 𝐹𝐹𝑖𝑖𝑥𝑥𝑖𝑖 +∑𝑗𝑗 𝑣𝑣𝑗𝑗 ∫0
𝑇𝑇
𝑞𝑞𝑗𝑗(𝑡𝑡) 𝑑𝑑𝑡𝑡

s. t. 𝑞𝑞𝑑𝑑 𝑡𝑡 −�
𝑘𝑘
𝑞𝑞𝑘𝑘 𝑡𝑡 + 𝑞𝑞𝑒𝑒− 𝑡𝑡 = 0

−𝑞𝑞𝑘𝑘 𝑡𝑡 ≤ 0 , −𝑞𝑞𝑒𝑒− 𝑡𝑡 ≤ 0

𝑞𝑞𝑙𝑙 𝑡𝑡 − 𝑥𝑥𝑙𝑙 ≤ 0 , 𝑞𝑞𝑒𝑒− 𝑡𝑡 − 𝑥𝑥𝑒𝑒 ≤ 0

𝑞𝑞𝑣𝑣 𝑡𝑡 − 𝐴𝐴𝐹𝐹𝑣𝑣(𝑡𝑡)𝑥𝑥𝑣𝑣 ≤ 0

𝜂𝜂𝑒𝑒 �
0

𝑇𝑇

𝑞𝑞𝑒𝑒− 𝑡𝑡 𝑑𝑑𝑡𝑡 −�
0

𝑇𝑇

𝑞𝑞𝑒𝑒 𝑡𝑡 𝑑𝑑𝑡𝑡 = 0

Sets: 𝑖𝑖 ∈ 𝑝𝑝, 𝑏𝑏,𝑣𝑣, 𝑒𝑒 , 𝑗𝑗 ∈ 𝑠𝑠,𝑝𝑝, 𝑏𝑏 ,𝑘𝑘 ∈ 𝑠𝑠,𝑝𝑝, 𝑏𝑏,𝑣𝑣, 𝑒𝑒 , 𝑙𝑙 ∈ 𝑝𝑝, 𝑏𝑏, 𝑒𝑒

Energy
storage

𝑞𝑞𝑝𝑝 𝑞𝑞𝑏𝑏 𝑞𝑞𝑣𝑣

𝑞𝑞𝑑𝑑

𝑞𝑞𝑒𝑒𝑞𝑞𝑒𝑒−

Generation and demand: q
Capacity: x
Fixed cost: F
Variable cost: v
Availability factor: AF

Peaker Base VRE

Demand

Load shedding
Total cost

Load balance

Capacity
constraints

Storage conservation



7

Profit Maximization for Technology i

Energy
storage

𝑞𝑞𝑝𝑝 𝑞𝑞𝑏𝑏 𝑞𝑞𝑣𝑣

𝑞𝑞𝑑𝑑

𝑞𝑞𝑒𝑒𝑞𝑞𝑒𝑒−

Peaker Base VRE

Demand

Load shedding

max𝜋𝜋𝑖𝑖 = 𝐴𝐴𝐴𝐴𝑖𝑖 − 𝐴𝐴𝐶𝐶𝑖𝑖 = �
0

𝑇𝑇
(𝑝𝑝 𝑡𝑡 − 𝑣𝑣𝑖𝑖)𝑞𝑞𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡 − 𝐹𝐹𝑖𝑖𝑥𝑥𝑖𝑖

Generation and demand: q
Capacity: x
Fixed cost: F
Variable cost: v

Electricity price: p
Annual Revenue: AR
Annual Cost: AC
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Market Equilibrium with Thermal Generation 

• System optimality conditions gives 
optimal durations of all generators 𝑖𝑖

min𝐶𝐶 ⇒
𝜕𝜕𝐶𝐶
𝜕𝜕𝑥𝑥𝑖𝑖

= 0

• Profit maximization gives the same result

max𝜋𝜋𝑖𝑖 ⇒
𝜕𝜕𝜋𝜋𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

= 0

• Cost recovery is ensured in optimum

𝜋𝜋𝑖𝑖 = 0

MW

𝑞𝑞𝑑𝑑

𝑞𝑞𝑑𝑑

𝑇𝑇

𝑥𝑥𝑏𝑏

𝑥𝑥𝑝𝑝

𝑡𝑡𝑠𝑠 𝑡𝑡𝑝𝑝
𝑡𝑡𝑠𝑠- duration of load shedding

𝑡𝑡𝑝𝑝- duration of peaker operation

• Load duration curve approach
– Green (2000), Stoft (2002)
– Inelastic demand 𝑞𝑞𝑑𝑑 𝑡𝑡
– No chronological effects
– No operating reserves
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System Optimality Conditions 
Peaker plant
𝜕𝜕𝐶𝐶
𝜕𝜕𝑥𝑥𝑝𝑝

= 𝐹𝐹𝑝𝑝 − 𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑝𝑝 � 𝑡𝑡𝑠𝑠

𝜕𝜕𝐶𝐶
𝜕𝜕𝑥𝑥𝑝𝑝

= 0 ⇒ 𝑡𝑡𝑠𝑠 =
𝐹𝐹𝑝𝑝

𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑝𝑝

Baseload plant
𝜕𝜕𝐶𝐶
𝜕𝜕𝑥𝑥𝑏𝑏

= 𝐹𝐹𝑏𝑏 − 𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑏𝑏 � 𝑡𝑡𝑠𝑠 − 𝑣𝑣𝑝𝑝 − 𝑣𝑣𝑏𝑏 � 𝑡𝑡𝑝𝑝 − 𝑡𝑡𝑠𝑠

𝜕𝜕𝐶𝐶
𝜕𝜕𝑥𝑥𝑏𝑏

= 0 ⇒ 𝑡𝑡𝑝𝑝 =
𝐹𝐹𝑏𝑏 − 𝐹𝐹𝑝𝑝
𝑣𝑣𝑝𝑝 − 𝑣𝑣𝑏𝑏

MW

𝑞𝑞𝑑𝑑

𝑞𝑞𝑑𝑑

𝑇𝑇

𝑥𝑥𝑏𝑏

𝑥𝑥𝑝𝑝

𝑡𝑡𝑠𝑠 𝑡𝑡𝑝𝑝

𝑡𝑡𝑠𝑠- duration of load shedding

𝑡𝑡𝑝𝑝- duration of peaker operation

Load duration curve
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Profit Maximization for Peaking Unit

MW

𝑞𝑞𝑑𝑑

𝑞𝑞𝑑𝑑

𝑇𝑇

𝑥𝑥𝑏𝑏

𝑥𝑥𝑝𝑝

𝑡𝑡𝑠𝑠 𝑡𝑡𝑝𝑝

max
𝑥𝑥𝑝𝑝

𝜋𝜋𝑓𝑓,𝑝𝑝 = �
0

𝑡𝑡𝑝𝑝
�𝑝𝑝 𝑡𝑡 − 𝑣𝑣𝑝𝑝)𝑞𝑞𝑓𝑓,𝑝𝑝(𝑡𝑡)𝑑𝑑𝑡𝑡 − 𝐹𝐹𝑝𝑝𝑥𝑥𝑓𝑓,𝑝𝑝 = 𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑝𝑝 𝑡𝑡𝑠𝑠 − 𝐹𝐹𝑝𝑝 𝑥𝑥𝑓𝑓,𝑝𝑝

𝜕𝜕𝜋𝜋𝑓𝑓,𝑝𝑝

𝜕𝜕𝑥𝑥𝑝𝑝
= 0 ⇒ 𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑝𝑝 𝑡𝑡𝑠𝑠 − 𝐹𝐹𝑝𝑝 = 0 ⇒ 𝑡𝑡𝑠𝑠 =

𝐹𝐹𝑝𝑝
𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑝𝑝

Same optimality condition as for system.

Cost recovery: 

The same holds true for the base plant.

𝜋𝜋𝑝𝑝 = 𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑝𝑝 𝑡𝑡𝑠𝑠𝑥𝑥𝑝𝑝 − 𝐹𝐹𝑝𝑝𝑥𝑥𝑝𝑝 = 0
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Market Equilibrium with VRE

• 𝑡𝑡𝑠𝑠 and 𝑡𝑡𝑝𝑝 are independent of VRE level
– Cost recovery for peak and base plants

• Base duration, 𝑡𝑡𝑏𝑏, must be determined
– Cost recovery for VRE plant

• Introduction of VRE (𝑥𝑥𝑣𝑣 > 0) tends to 
give

– Less baseplant capacity and energy
– Slightly more peaker capacity
– Slightly more load shedding
– Some VRE curtailment

MW

𝑞𝑞𝑛𝑛𝑑𝑑 𝑡𝑡 = 𝑞𝑞𝑑𝑑 𝑡𝑡 − 𝑞𝑞𝑣𝑣 𝑡𝑡

𝑞𝑞𝑑𝑑 𝑡𝑡

𝑞𝑞𝑑𝑑

𝑞𝑞𝑑𝑑

𝑥𝑥𝑝𝑝𝑛𝑛𝑒𝑒𝑤

𝑥𝑥𝑏𝑏𝑛𝑛𝑒𝑒𝑤
𝑥𝑥𝑏𝑏𝑜𝑙𝑙𝑑𝑑

𝑥𝑥𝑝𝑝𝑜𝑙𝑙𝑑𝑑

𝑇𝑇𝑡𝑡𝑝𝑝𝑡𝑡𝑠𝑠 𝑡𝑡𝑏𝑏

• Net load duration curve approach
– e.g. Kennedy (2005)
– Net demand: 𝑞𝑞𝑛𝑛𝑑𝑑 𝑡𝑡 = 𝑞𝑞𝑑𝑑 𝑡𝑡 − 𝑥𝑥𝑣𝑣 � 𝐶𝐶𝐹𝐹𝑣𝑣(𝑡𝑡)

– Linear VRE scaling: 𝑞𝑞𝑣𝑣 𝑡𝑡 = 𝑥𝑥𝑣𝑣 � 𝐶𝐶𝐹𝐹𝑣𝑣(𝑡𝑡)
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Optimality Conditions with VRE
• System optimality condition for the VRE plant given:

• tb gives the optimal VRE capacity from net demand duration curve

• Profit maximization gives same optimality conditions:

• Cost recovery of VRE plant also ensured, 𝜋𝜋𝑣𝑣 = 0

𝑞𝑞𝑛𝑛𝑑𝑑 𝑡𝑡𝑏𝑏 = 0 ⇒ 𝑥𝑥𝑣𝑣

𝜋𝜋𝑣𝑣 = 𝐴𝐴𝐴𝐴𝑣𝑣 − 𝐴𝐴𝐶𝐶𝑣𝑣 = 𝑥𝑥𝑣𝑣 �
0

𝑇𝑇
𝑝𝑝 𝑡𝑡 𝐴𝐴𝐹𝐹𝑣𝑣 𝑡𝑡 𝑑𝑑𝑡𝑡 − 𝐹𝐹𝑣𝑣 � 𝑥𝑥𝑣𝑣

𝛿𝛿𝜋𝜋𝑣𝑣
𝛿𝛿𝑥𝑥𝑣𝑣

= 0 ⇒ 𝐹𝐹𝑣𝑣 = �
0

𝑇𝑇
𝑝𝑝 𝑡𝑡 𝐴𝐴𝐹𝐹𝑣𝑣 𝑡𝑡 𝑑𝑑𝑡𝑡

𝜕𝜕𝐶𝐶
𝜕𝜕𝑥𝑥𝑣𝑣

= 𝐹𝐹𝑣𝑣 − 𝑣𝑣𝑠𝑠𝐴𝐴𝐹𝐹𝑣𝑣
0,𝑡𝑡𝑠𝑠 𝑡𝑡𝑠𝑠 − 𝑣𝑣𝑝𝑝𝐴𝐴𝐹𝐹𝑣𝑣

𝑡𝑡𝑠𝑠,𝑡𝑡𝑝𝑝 𝑡𝑡𝑝𝑝 − 𝑡𝑡𝑠𝑠 − 𝑣𝑣𝑏𝑏𝐴𝐴𝐹𝐹𝑣𝑣
𝑡𝑡𝑝𝑝,𝑡𝑡𝑏𝑏 𝑡𝑡𝑏𝑏 − 𝑡𝑡𝑝𝑝

𝜕𝜕𝐶𝐶
𝜕𝜕𝑥𝑥𝑣𝑣

= 0 ⟹ 𝑡𝑡𝑏𝑏 = 𝑡𝑡𝑝𝑝 + 𝑣𝑣𝑏𝑏𝐴𝐴𝐹𝐹𝑣𝑣
�[𝑡𝑡𝑝𝑝,𝑡𝑡𝑏𝑏
−1

� 𝐹𝐹𝑣𝑣 − 𝑣𝑣𝑠𝑠𝑡𝑡𝑠𝑠𝐴𝐴𝐹𝐹𝑣𝑣
0,𝑡𝑡𝑠𝑠 − 𝑣𝑣𝑝𝑝(𝑡𝑡𝑝𝑝 − 𝑡𝑡𝑠𝑠)𝐴𝐴𝐹𝐹𝑣𝑣

�[𝑡𝑡𝑠𝑠,𝑡𝑡𝑝𝑝
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Market Equilibrium with Energy Storage
• ES is challenging to include in duration curve modelling due to 

the energy storage level constraint
– We can model power capacity limitation and efficiency explicitly, but 

not the energy storage constraint
– Previous examples include Steffen and Weber (2013)

• We have derived optimality conditions for different EES 
operating assumptions
– ES charging with «surplus» VRE energy only

• Limited storage: Discharing only replaces base generation
• Unlimited storage: Discharing at any time

– General model with ES for price arbitrage across time periods
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ES for Surplus VRE: Limited Storage
• Optimality condition for ES determines 

the duration of maximum charging
– 𝑡𝑡 ≤ 𝑡𝑡𝑏𝑏 : Price set by most expensive generator in 

operation.
– 𝑡𝑡𝑏𝑏 < 𝑡𝑡 < 𝑡𝑡𝑣𝑣 : Price set by the storage opportunity

cost. It is the value of one more kWh stored
energy. 𝑝𝑝 = 𝜂𝜂𝑒𝑒 � 𝑉𝑉𝐶𝐶𝑏𝑏

– 𝑡𝑡 ≥ 𝑡𝑡𝑣𝑣 : Price set by VRE. 𝑝𝑝 = 𝑣𝑣𝑣𝑣 = 0

• Introduction of EES increases the 
dispatch of VRE

• No change in thermal capacity, but less 
base dispatch

𝜂𝜂𝑒𝑒𝑣𝑣𝑏𝑏 𝑇𝑇 − 𝑡𝑡𝑣𝑣 = 𝐹𝐹𝑒𝑒

MW

𝑡𝑡𝑣𝑣
𝑡𝑡𝑠𝑠 𝑡𝑡𝑝𝑝 𝑡𝑡𝑏𝑏

𝑥𝑥𝑏𝑏

𝑥𝑥𝑝𝑝

𝑞𝑞𝑑𝑑

𝑥𝑥𝑒𝑒

Discharge

Charge

𝑇𝑇

𝑞𝑞𝑛𝑛𝑑𝑑(𝑡𝑡)

Optimality conditions for ES:
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ES for Surplus VRE: Unlimited Storage

MW

𝑥𝑥𝑒𝑒

𝑥𝑥𝑏𝑏

𝑥𝑥𝑒𝑒

𝑥𝑥𝑝𝑝

𝑡𝑡𝑣𝑣

𝑞𝑞𝑛𝑛𝑑𝑑(𝑡𝑡)

𝑡𝑡𝑠𝑠𝑡𝑡𝑝𝑝 𝑡𝑡𝑏𝑏
𝑇𝑇

Discharge

Charge

𝜂𝜂𝑒𝑒𝑣𝑣𝑏𝑏 𝑇𝑇 − 𝑡𝑡𝑣𝑣 = 𝐹𝐹𝑒𝑒 − 𝐹𝐹𝑏𝑏

𝜕𝜕𝐶𝐶
𝜕𝜕𝑥𝑥𝑒𝑒

= 𝐹𝐹𝑒𝑒 − 𝑣𝑣𝑠𝑠𝑡𝑡𝑠𝑠 − 𝑣𝑣𝑝𝑝 𝑡𝑡𝑝𝑝 − 𝑡𝑡𝑠𝑠 − 𝑣𝑣𝑏𝑏
𝜕𝜕𝐸𝐸1
𝜕𝜕𝑥𝑥𝑒𝑒

= 0

𝜕𝜕𝐶𝐶
𝜕𝜕𝑥𝑥𝑒𝑒

= 𝐹𝐹𝑒𝑒 − 𝑣𝑣𝑠𝑠𝑡𝑡𝑠𝑠 − 𝑣𝑣𝑝𝑝 𝑡𝑡𝑝𝑝 − 𝑡𝑡𝑠𝑠 − 𝜂𝜂𝑒𝑒𝑣𝑣𝑏𝑏 𝑇𝑇 − 𝑡𝑡𝑣𝑣 + 𝑣𝑣𝑏𝑏𝑡𝑡𝑝𝑝 = 0
𝐸𝐸1

𝐸𝐸1 + 𝑥𝑥𝑒𝑒𝑡𝑡𝑝𝑝 = 𝜂𝜂𝑒𝑒𝐸𝐸2 + 𝜂𝜂𝑒𝑒 𝑇𝑇 − 𝑡𝑡𝑣𝑣

𝐸𝐸2

Optimality conditions for ES:

• Optimality conditions for VRE also changes
– Lower base duration, tb

• Introduction of ES increase VRE capacity, 
reduces thermal capacity
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ES for General Price Arbitrage
MW

𝑡𝑡𝑒𝑒

𝑡𝑡𝑣𝑣
𝑡𝑡𝑠𝑠 𝑡𝑡𝑝𝑝 𝑡𝑡𝑏𝑏

𝑥𝑥𝑏𝑏

𝑥𝑥𝑒𝑒

𝑥𝑥𝑝𝑝

𝑞𝑞𝑑𝑑

𝑥𝑥𝑒𝑒

Ee,1

Ee,2

Ee-,1

Ee-,2

𝑇𝑇

• Indirect representation of storage limitation
– ES stores VRE -> Replace Base
– ES stores Base -> Replace Peak+Shedding

• Optimality condition for ES determines the 
duration of maximum charging and the 
duration of peaker

– 4 non-linear equations with four unknowns
• 𝑡𝑡𝑝𝑝, 𝑡𝑡𝑒𝑒 , 𝑡𝑡𝑏𝑏 , 𝑡𝑡𝑣𝑣
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Insights from Analytical Model
• Profit maximization give same optimality conditions as system cost 

minimization
– All plants recover their costs in system optimum

• Optimal VRE capacity always lead to some «excess» energy due to 
linear scaling
– Exception: Optimal VRE capacity is zero

• Introducing unlimited ES for used for «excess» VRE energy triggers 
more installed VRE capacity in market equilibrium

• VRE and ES reduce average energy prices in equilibrium
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Numerical Example
• European aggregated hourly time 

series for 1 year
– Wind and solar
– Load scaled to 100MW

• Costs based on EU Commission 
reference Scenario 2050

– Technology cost and plant data
– Fuel and carbon prices

• Duration curve model based on
optimality conditions for all plants

• YACEMOD* - LP with chronologial 
time series is used for validation
*Yet Another Capacity Expansion MODel

• Key assumptions
– Peaker p: OCGT
– Baseplant b: CCGT
– VRE plant v: Offshore wind or solar PV
– Energy Storage e: Li-Ion or Pumped hydro
– Price during load shedding: 3000 $/MWh

• Three main cases
– Case 1 - Base: Only peaker and baseplant
– Case 2 - Add VRE 
– Case 3 - Add VRE and ES
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Load and Net Load Duration Curves
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Installed Wind Capacity as a Function of 
Investment Cost



21

Saturation of Wind Penetration without ES
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VRE Impacts on Electricity Costs
Average Electricity Costs (ACE) decreases as wind and solar becomes more competitive.
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Adding Energy Storage
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ES increases VRE; limited Cost Reduction
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Summary of Results: Capacities and Prices

1 - Base 2 - VRE 3 - VRE + ES
Weighted 
avg. price 114.9 81.6 81.4

All technologies break even in all cases

- VRE gives less base, more peak plants
- ES gives more VRE, less base and peak
- VRE and ES give much lower emissions
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Conclusions
• All plants recover their costs in a perfect market with VRE and EES

– Gives optimal generation mix to minimize system cost
– The result is identical to profit mazimization of price-taker firms
– Analytical and numerical analyses indicate that thermal generators, VRE, and ES can 

co-exist in regular energy-only markets
• The merit-order effect of VRE changes the capacity mix so that all 

(remaining) generators recovers their costs
– Just as when new, cheaper thermal generators enters the marked

• EES triggers more VRE capacity in equilibrium,
– EES creates a new price segment based on the marginal value of storage, where the VRE 

gains additional profits.
• Theoretical model results are confirmed by standard generation expansion

model (LP) with chronological time series inputs
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