Indirect Mechanism Design for Efficient Integration of Uncertain Resources in Power System Operations

Yue Zhao¹

Joint work with Hossein Khazaei¹ and X. Andy Sun²

¹ Stony Brook University ² Georgia Tech

11th annual FERC software conference 6/24/2020

Background

- Solving multi-stage multi-period SCUC and SCED in the presence of uncertain resources (renewables, DERs, EVs...)
 - Deterministic optimization: employ point forecasts of randomness.
 - Not accurately capturing the uncertainties.
 - Stochastic optimization: employ "scenarios" that represent randomness
 - Computational complexity drastically increases.
 - Unknown uncertainties.
 - Robust optimization: employ uncertainty sets and worstcase assumptions.
 - Conservative

Motivation

 Can we reach the social optimum defined by the stochastic optimization, without having the ISO actually solving this computationally challenging problem?

Goals

- Practicality: Design a "sufficiently simple" market mechanism where the ISO solves a computationally tractable problem, and yet
- Efficiency: the market reaches social efficiency at its equilibria granted strategic behaviors of the participants.

Approach

- Indirect mechanism design: Resources as market participants
 - Information collection
 - System operation
 - Payment allocation

Approach

- Indirect mechanism design: Existing example: Energy market
 - Information collection
 - Generators submit their cost functions and constraints
 - System operation
 - SCUC and SCED
 - Payment allocation
 - Multi-settlement payments with LMPs

Approach

- Indirect mechanism design: With uncertain resources
 - Information collection
 - What information should we elicit from uncertain resources?
 - System operation
 - What optimization problems should we solve given these info?
 - Payment allocation
 - How should we pay each uncertain resource?
- Key question: how would the market equilibrium perform re: social efficiency, granted the market participants act strategically, not assuming perfect competition or truthfulness?

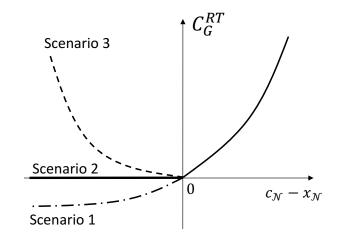
Related Work

- Grid operation and planning with uncertain renewables
 - [Varaiya, Wu, Bialek 11], [DeJonghe, Hobbs, Belmans 12]
- Market equilibrium in deterministic settings
 - Single stage: [Hu & Ralph 07] [Ruiz et al. 14] [Anderson & Philpott 02] [Joahri & Tsitsiklis 11] [Lin & Bitar 17]
 - Multi-stage: [Allaz & Vila 93] [Yao, Adler, Oren 08]
- Renewables bidding and payments in power markets
 - Single RPP [Bitar et al. 12] [Morales, Conejo, Pérez-Ruiz 10] [Baringo & Conejo 13, 16]
 - Many RPPs / aggregation [Baeyens et al. 13], [Nayyar et al. 13], [Lin & Bitar 14], [Z. et al. 15] [Khazaei & Z. 17, 18], [Zhang Rajagopal Johari 15].

Integrating Renewables: Uncongested Case

[Khazaei and Z. 18]

- Model: A two-stage (DA-RT) single-period problem
 - Two sets of conventional generators,
 - DA generators:
 - Can be slow but cheap
 - RT generators:
 - Can be Fast but expensive



There can be an arbitrary overlap between the two sets.

- N Renewable Power Producers (RPPs)
- Not yet considering UC, security constraints, etc.
- Focus on the behaviors of strategic RPPs.

Optimal Dispatch (Uncongested)

Stochastic optimization (assuming RPPs' variable costs are zero)

$$\min_{q_G^{DA}} C_G^{DA} \left(q_G^{DA} \right) + \mathbb{E}_{X_N} \left[C_G^{RT} \left(L - q_G^{DA} - x_N \right) \right]$$

DA and RT Prices --- Marginal Cost of Generation

$$p^{f} = \left. \frac{dC_{G}^{DA}\left(q\right)}{dq} \right|_{q_{G}^{DA}}, \quad p^{r} = \left. \frac{dC_{G}^{RT}\left(q\right)}{dq} \right|_{q_{G}^{RT}}$$

- Lemma (Optimal Dispatch, Uncongested)
 - The DA dispatch is optimal iff $p^f = \mathbb{E}_{X_{\mathcal{N}}}\left[p^r
 ight]$.

Proposed Market Mechanism

- Information collection
 - At DA, each RPP i submits a "commitment", c_i , to the ISO.
- System operation
 - At DA, the ISO takes the commitment as "firm", and dispatch the DA generators: $q_G^{DA} = L c_N$.
 - At RT, the renewables are realized, the RT generators are dispatched to balance the system: $q_G^{RT} = c_N x_N$.
- Payment allocation to RPPs according to the DA and RT Prices

$$\mathcal{P}_i = p^f(c_{\mathcal{N}}) \cdot c_i - p^r(c_{\mathcal{N}} - x_{\mathcal{N}}) \cdot (c_i - x_i)$$

 $- \quad \text{A price-making environment} \\ \quad p^f = \left. \frac{dC_G^{DA}\left(q\right)}{dq} \right|_{q_G^{DA}}, \ \ p^r = \left. \frac{dC_G^{RT}\left(q\right)}{dq} \right|_{q_G^{RT}}$

Benefits for the ISO

• ISO's dispatch problem is much simpler.

$$q_G^{DA} = L - c_{\mathcal{N}}$$

$$q_G^{RT} = c_{\mathcal{N}} - x_{\mathcal{N}}$$

- The uncertainty of renewables are hidden from the ISO, but taken on by the RPPs.
- ISO only elicits one number, c_i , from each RPP.
 - Very simple to implement.

Outcome of the Proposed Mechanism

- A Non-Cooperative Game of RPPs
 - When submitting its DA commitment c_i , a strategic RPP i will maximize its expected profit, given by

$$\pi_i(c_i, c_{-i}) = p^f(c_{\mathcal{N}}) \cdot c_i - \mathbb{E}\left[p^r(c_{\mathcal{N}} - x_{\mathcal{N}}) \cdot (c_i - x_i)\right]$$

- The expected profit depends on others' commitments, the conventional generators' cost functions and production levels, and the joint distribution of the renewables.
- The Game among the RPPs in the DA market
 - Players: the N RPPs
 - Strategies: Each RPP's firm power commitment at DA
 - Payoffs: Each RPP's expected profit

Outcome of the Proposed Mechanism (cont.)

- The outcome of the commitment game Nash Equilibrium
 - NE: a set of commitments c_1 , c_2 , ..., c_N , such that each c_i optimally solves its best response problem, simultaneously,

$$\forall i, c_i \in \operatorname*{argmax}_{c_i} \pi_i(c_i, c_{-i})$$

- Questions
 - Does NE induces the optimal operation decisions by the ISO fully considering the RPPs' uncertainties?
 In other words, is the NE "efficient"?

Main Results (Uncongested)

Theorem (Asymptotic Efficiency of Pure NE)

The social efficiency is achieved at any pure NE as $N \to \infty$,

$$\lim_{N \to \infty} c_{\mathcal{N}}^{\star, ne} = c_{\mathcal{N}}^{o}$$

Moreover, the gap between the NE and the social optimum has a closed-form characterization,

$$p^{f}\left(c_{\mathcal{N}}^{\star,ne}\right) - \mathbb{E}_{X_{\mathcal{N}}}\left[p^{r}\left(c_{\mathcal{N}}^{\star,ne} - x_{\mathcal{N}}\right)\right] = -\frac{\frac{d\mathbb{E}_{X_{\mathcal{N}}}[\mathcal{P}_{\mathcal{N}}]}{dc_{\mathcal{N}}}\Big|_{c_{\mathcal{N}}^{\star,ne}}}{N-1}$$

Remarks

• To compute the NE solution, each RPP i only needs the two-dimensional joint pdf of X_i and X_N , not the joint pdf of all RPPs.

The mechanism offers a justified way for paying the RPPs.

$$\mathcal{P}_i = p^f(c_{\mathcal{N}}^{ne}) \cdot c_i^{ne} - p^r(c_{\mathcal{N}}^{ne} - x_{\mathcal{N}}) \cdot (c_i^{ne} - x_i)$$

Numerical Experiments

- Simulation setting
 - Generators' parameters

$$C_G^{DA}(q) = \frac{1}{2}\alpha_G^{DA} \cdot q^2 + \beta_G^{DA} \cdot q,$$

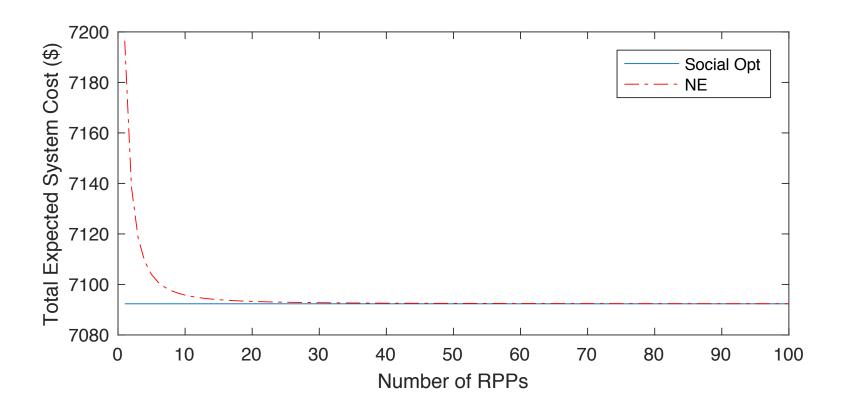
$$C_G^{RT}(q) = \frac{1}{2}\alpha_G^{RT} \cdot q^2 + \beta_G^{RT} \cdot q.$$

	$\alpha_G \left(\$/(MWh)^2 \right)$	$\beta_G\left(\$/(MWh)\right)$
DA	0.01	15
RT	0.02	30

- Renewables' parameters
 - For a variety of *N*, consider *N* i.i.d RPPs.
 - Consider a fixed expectation (500MW) and standard deviation (30MW) for the total renewable generation.

Numerical Experiments (cont.)

Total Expected System Cost: Optimum vs. NE



Integrating Renewables: Congested Case

[Khazaei, Z. and Sun 19]

- A two-stage (DA-RT) single-period problem
 - Conventional generators and RPPs at arbitrary locations in a power network.
 - Not yet considering UC, security constraints, etc.
- The optimal DA dispatch requires solving a two-stage stochastic optimization problem with power network constraints.

Proposed Market Mechanism

- Information collection
 - At DA, each RPP i submits a "commitment", c_i, to the ISO.
- System operation
 - At DA, the ISO takes the commitments as "firm", and solves a deterministic OPF for DA dispatch to balance the system.
 - At RT, the renewables $\{X_i\}$ are realized, the ISO solves a deterministic OPF for RT dispatch to balance the system.
- Payment allocation according to the DA and RT LMPs (price making)

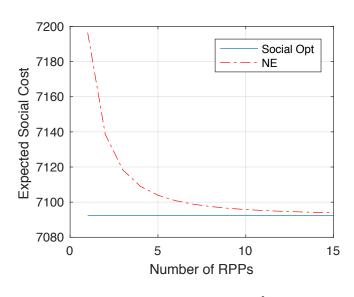
$$p_m^{DA} \cdot c_i - p_m^{RT} \cdot (c_i - X_i)$$

Benefits for the ISO

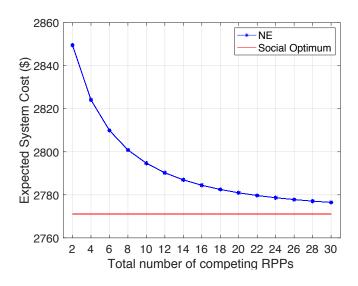
- ISO's only solves a deterministic DA dispatch, and hence can directly apply existing software/solvers.
 - The uncertainty of renewables are hidden from the ISO, but taken on by the RPPs.
- ISO only elicits one number, c_i , from each RPP.
 - Very simple to implement.

Outcome of the Proposed Mechanism

- A Non-Cooperative Game of RPPs
- The crux of the work is efficient computation of the NE.
- We develop a method for efficiently computing the NE based on finding the congestion pattern at NE.



Uncongested



congested, IEEE 14-bus

Finding NE in the Congested Case

- Observations
 - No analytical form of LMPs.
 - For each RPP, the best response condition, while can be evaluated numerically, does not enjoy an analytical form.
 - The results from the uncongested case do not hold.

Finding NE in the Congested Case

Observations

- No analytical form of LMPs.
 - For each RPP, the best response condition, while can be evaluated numerically, does not enjoy an analytical form.
 - The results from the uncongested case do not hold.

Idea

- If, for some reason, the congestion pattern at NE is known:
 - Finding the NE becomes much simplified, and in fact reduces to solving a set of linear equations when generators have quadratic generation costs.

Finding NE assuming a Congestion Pattern

DA market clearing

$$\begin{aligned} & \min_{\boldsymbol{q}^{D}} \ \sum_{i \in S_{G}^{D}} C_{i}^{D} \left(q_{i}^{D} \right) = \sum_{i \in S_{G}^{D}} \left(\frac{1}{2} \alpha_{i}^{D} \cdot (q_{i}^{D})^{2} + \beta_{i}^{D} q_{i}^{D} \right) \\ & \text{s.t.} \sum_{i \in S_{G}^{D}} q_{i}^{D} = \sum_{u \in \mathcal{N}} L_{u}^{D} - \sum_{k \in S_{R}} c_{k}, \quad \tilde{q}_{u}^{D} = \sum_{i \in S_{G,u}^{D}} q_{i}^{D} + \sum_{k \in S_{R,u}} c_{k} - L_{u}^{D}, \\ & \left| \sum_{u \in \mathcal{N}} PTDF_{u,o}^{(m,n)} \cdot \tilde{q}_{u}^{D} - \sum_{v \in \mathcal{N}} PTDF_{v,o}^{(m,n)} \cdot \tilde{q}_{v}^{D} \right| \leq T^{(m,n)}, \quad \forall (m,n) \in S_{T}, \end{aligned}$$

RT market clearing

$$\begin{aligned} & \min_{\boldsymbol{q}^{R}} \ \sum_{j \in S_{G}^{R}} C_{j}^{R} \left(\hat{q}_{j}^{R} \right) = & \sum_{j \in S_{G}^{R}} \left(\frac{1}{2} \alpha_{j}^{R} \cdot (\hat{q}_{j}^{R})^{2} + \beta_{j}^{R} \hat{q}_{j}^{R} \right) \\ & \text{s.t.} \ \sum_{j \in S_{G}^{R}} q_{j}^{R} = \sum_{k \in S_{R}} \left(c_{k} - x_{k} \right), \quad \tilde{q}_{u}^{R} = \sum_{j \in S_{G,u}^{R}} q_{j}^{R} + \sum_{i \in S_{G,u}^{D}} q_{i}^{D} + \sum_{k \in S_{R,u}} x_{k} - L_{u}^{D}, \\ & \left| \sum_{u \in \mathcal{N}} PTDF_{u,o}^{(m,n)} \cdot \tilde{q}_{u}^{R} - \sum_{v \in \mathcal{N}} PTDF_{v,o}^{(m,n)} \cdot \tilde{q}_{v}^{R} \right| \leq T^{(m,n)}, \quad \forall (m,n) \in S_{T}, \end{aligned}$$

Finding NE assuming a Congestion Pattern (cont.)

DA market clearing assuming a congestion pattern

Theorem 1: For an assumed DA congestion pattern in the DA market, the optimal solution of the DA economic dispatch in (1a)-(1c) is a linear function of the DA commitments of the RPPs as

$$q^{D} = G_1^{D} c + G_2^{D}. (8)$$

Similarly, the DA-LMPs at the DA market is a linear function of the DA commitments of the RPPs as

$$\lambda^D = H_1^D c + H_2^D. \tag{9}$$

RT market clearing assuming a congestion pattern

Theorem 2: For an assumed RT congestion pattern in the RT market, a given set of power dispatches of DA conventional generators in the DA market, the optimal solution of the RT economic dispatch in (3a)-(4) is a linear function of the RPPs' DA commitments and RT realizations as

$$q^{R} = G_1^{R} c + G_2^{R} x + G_3^{R}. (10)$$

Similarly, the RT-LMPs is a linear function of the RPPs' DA commitments and RT realizations as

$$\lambda^{R} = H_{1}^{R} c + H_{2}^{R} x + H_{3}^{R}. \tag{11}$$

RPPs best responses assuming a congestion pattern - a set of linear equations

$$oldsymbol{\pi} = \operatorname{diag}\left((E_R)^{ op} oldsymbol{\lambda}^D\right) oldsymbol{c} + \mathbb{E}\left[\operatorname{diag}\left((E_R)^{ op} oldsymbol{\lambda}^R\right) (oldsymbol{x} - oldsymbol{c})
ight].$$

$$\frac{d\pi_k}{dc_k}\Big|_{(c_1,\cdots,c_K)=\left(c_1^\star,\cdots,c_K^\star\right)} = 0, \ \forall k \in S_R. \quad \Rightarrow \quad \left(\operatorname{diag}\left(\operatorname{diag}\left((E_R)^\top \left(H_1^D - H_1^R\right)\right)\right) + (E_R)^\top \left(H_1^D - H_1^R\right)\right)\boldsymbol{c} \\ + (E_R)^\top \left(H_2^D - H_2^R\boldsymbol{\mu} - H_3^R\right) + \operatorname{diag}\left(\operatorname{diag}\left((E_R)^\top H_1^R\right)\right)\boldsymbol{\mu} = 0.$$

Finding NE in the Congested Case

- Observations
 - No analytical form of LMPs.
 - For each RPP, the best response condition, while can be evaluated numerically, does not enjoy an analytical form.
 - The results from the uncongested case do not hold.
- Idea
 - If, for some reason, the congestion pattern at NE is known:
 - Finding the NE becomes much simplified, and in fact reduces to solving a set of linear equations when generators have quadratic generation costs.
 - How do we find the congestion pattern at NE?

- Solution Algorithm
 - Assuming a congestion pattern:
 - Find the set of RPP's commitments {c_i} at NE under this
 assumed congestion: This provides a candidate for the true
 NE.

- Solution Algorithm
 - Assuming a congestion pattern:
 - Find the set of RPP's commitments {c_i} at NE under this
 assumed congestion: This provides a candidate for the true
 NE.
 - Assuming the set of commitments at this candidate NE, solve the ISO's problem of optimal deterministic dispatch. Observe the resulting congestion at the optimal solution.

- Solution Algorithm
 - Assuming a congestion pattern:
 - Find the set of RPP's commitments {c_i} at NE under this
 assumed congestion: This provides a candidate for the true
 NE.
 - Assuming the set of commitments at this candidate NE, solve the ISO's problem of optimal deterministic dispatch. Observe the resulting congestion at the optimal solution.
 - If the assumed and the resulting congestion patterns agree, the NE candidate is a true NE.

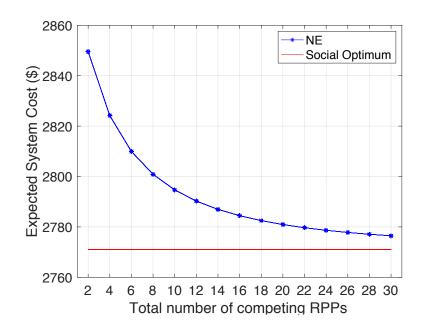
- Solution Algorithm
 - Assuming a congestion pattern:
 - Find the set of RPP's commitments {c_i} at NE under this
 assumed congestion: This provides a candidate for the true
 NE.
 - Assuming the set of commitments at this candidate NE, solve the ISO's problem of optimal deterministic dispatch. Observe the resulting congestion at the optimal solution.
 - If the assumed and the resulting congestion patterns agree, the NE candidate is a true NE.
 - Otherwise, test another congestion pattern assumption
 - E.g., move on to test the resulting congestion from the last iteration.
 - Or employ some other search algorithm.

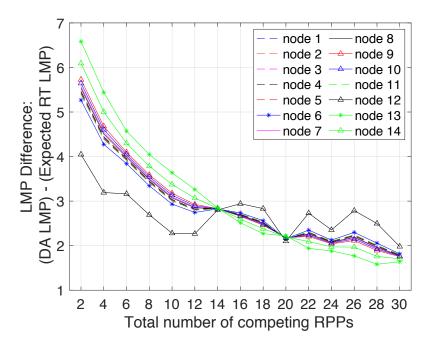
Computational Complexity

- The complexity of finding NE is decoupled into
 - a) Searching over congestion patterns
 - b) Computing NE candidate given a congestion pattern
- Step b) can be efficiently performed.
 - Thus, the computation can easily be scaled to having a large number of RPPs.
- Step a) is still combinatorial
 - However, conventional wisdom in practice as well as recent works show that the congestion patterns that can actually appear are very limited [Ng et al. 18] [Misra Roald Ng 19].
 - Various heuristics can be developed.

Numerical Experiments

- Simulation setting
 - IEEE 14-bus system
 - 3 DA conventional generators, 2 RT conventional generators
 - RPPs located at 2 buses





Summary

- To reach social efficiency in the presence of renewable energies, we need not complicate the ISO's optimization problem.
- Instead, via properly designed market mechanism to engage RPPs, an ISO needs only to solve a deterministic optimization as usual.
- The competition among the participants will "push" the market equilibrium to social efficiency as if a centralized stochastic optimization is solved.
- The renewables are held responsible for their uncertainties.

Next Steps

- Extension
 - Integrating uncertain Demand Response providers

- Future work: Multi-stage and multi-period
 - UC, security constraints
 - Integrating energy storage

Thanks!