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1. The Pro2R project
Watt-Sun = Conditional Net Load Ramp Forecasts = System Simulations
Watt-Sun probabilistic forecasts
2. How can probabilistic forecasts help operators? The problem of
net load ramps
CAISO: How much ramp product to procure?
3. Can we condition ramp uncertainty forecasts on solar
uncertainty?
What are the benefits of weather-informed ramp requirements?

5. Conclusion
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Used quantile regression to deploy
probabilistic forecast models
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Quantiles of solar as function of independent variables

Example results for 2 hr-ahead forecasts

Distributions are asymmetric = hence important to have quantile regression techniques
Adjacent days can have very different distributions; in contrast, present CAISO flexiramp requirements are very stable day-to-
day because they don't reflect weather forecasts = need to integrate probabilistic forecasts in requirements

forecast quantiles for CA_TOPAZ
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Comparison of Watt-Sun Probabilistic Forecast with Bias-Corrected

NOAA High Resolution Rapid Refresh (May 2019)

Empirical CDF
Score: 0.0543
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Bias Corrected HRRR (normal distribution)
Score: 0.0859




Funded by:

SOLAR ENERGY
TECHNOLOGIES OFFICE

Forecast Error Comparison
Watt-Sun 1.0 CAISO, MISO

. Dec. 2019, forecast horizon 2 hr.

. P-P Plot score evaluation of probabilistic calibration (daylight time only)
Watt-Sun 1.0 outperforms HRRR Bias-Corrected in 9 out of 10 sites in each market (CAISO shown below)

Watt-Sun0.1 and HRRR Bias Corrected Model P-P Plot Score Comparison for CAISO Sites for December 2019
N HRRR Bias Corrected
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https://ibmpairs.mybluemix.net/queries/3e28d6e0-bb59-45ae-b00f-ca749fa5del13?layer=782375043&mapType=satellite (Need to register as PAIRS user)
*  PAIRS querying functionality on rasterized forecasts:
Continuous point queries for probabilistic forecasts anywhere within user-defined region
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The Ramp Visualization for
Situational Awareness (RaViS)
is a modular dashboard for
viewing:

forecast timeline

spatially relevant forecast and
event data

w uriTio *
STATES _

details of specific events as
desired, including market data

Design:

Designed to use web
application technologies and
tooling

Utilizing this technology will
enable deployment in any
environment, using any
operating system 10
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2. How can probabilistic forecasts help operators? The problem of
net load ramps
CAISO: How much ramp product to procure?

3.
> =
Actual net-load and 3-hour ramps are about four et

years ahead of ISO’s original estimate W B

Typical Spring Day

&3 Cadlifornia ISO

Source: www.caiso.com




Increasing CAISO Load
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A. Motley, www.caiso.com/Documents/Briefing-Day-AheadLoadForecastingAnalysis-Presentation-Nov2018.pdf
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The 10-minute net load variability for January through
March 2019 can exceed 2,000 MW during sunset

10-Minute Ramp Distribution — Jan, Feb & Mar 2019
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www.energy.gov/sites/prod/files/2019/06/f64/Operating%20Reserves%20-%20Loutan.pdf
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Flexible Ramping Product

* CAISO (RT 5min & 15 min), MISO (DA/RT), SPP (Proposed)
* Goals:

Pre-position supply to meet unexpected up- and down-net load ramps

Compensate, with certainty, prepositioned supply who experience
opportunity costs

* CAISO implemented in 2016 throughout EIM

Based on difference between two forecasts for interval t's net load: earlier
“first advisory” and later “binding”

Adjustments for deliverability and other issues

Revision: conditional on weather (www.caiso.com/StakeholderProcesses/
Flexible-ramping-product-refinements)

Plans to extend to day-ahead: Imbalance reserve =1
W e Funded by:
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Example: CAISO Flexible Ramp Product
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FLEXIBLE RAMPING PRODUCT RTUC REQUIREMENT ILLUSTRATIVE EXAMPLE

RTUC run
' 1
1 1§t -
I . t (binding interval) h 5.( advisory
T—-37.5 minutes interval)

A 4

Based on www.caiso.com
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Whence Error’s Distribution?

et
* RTPD: Past 40 days of observations of:
(t-37.5 forecast for t+15 load) — (t-22.5 forecast for t+15)
* Actually ... - (MAX of three 5-min Real-Time settlement forecasts
within t+15)
- Histogram

* Could this be conditioned on probabilistic forecast of load, wind
and solar on a given day?
Say that today there is less solar uncertainty than usual? Or more?
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Expected Histogram Sample used to Calculate
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Uncertainty Requirement for EIM Area -- January 25, -
201 8 ‘ _ * Unconditional histogram
http://www.caiso.com/D gendaandPr MarketPerfomanceandPlanningForum-Feb202018.pdf .
constructed from rolling

1000- e window data of 40 days
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3. Can we condition ramp uncertainty forecasts on solar
uncertainty?
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Can we condition ramp needs on solar uncertainty?

*  Type of days vs. uncertainties

CAISQO’s baseline does not

NL forecasting uncertainties Greater (e]'" Smaller (e} .
g (e 1) (e™V) consider weather types, and
Solar power profile Jagged Smooth sunny and cloudy days are all
Problems with CAISO’s Under procurement, Over procurement, mixed up.
baseline risk of reserve shortage  reduced market efficiency
CAISO FRP [ CARBERP
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Research Question: Can Watt-Sun probabilistic
forecasts be used to recognize “type of day” and Dec. 2019 11 a.m.-2 p.m. net load uncertainty distributions,
inform ramping requirements? conditioned on day type (Topaz site)
under Low vs High Solar Uncertainty
Hypothesis:

group = sampie cloudy = sample sunny
* Narrow (wider) Watt-Sun forecast interval

~lower (higher) errors for CAISO upward ramp of net
load

289 MW mean upward

0.751 197 MW mean upward

ramp

- lower (higher) ramp requirements

Methods summary:

1. Two state classifier: Partition days into two subsets 0.251
based on degree “solar uncertainty” (IBM forecast data
— width of 25t to 75t percentile forecasts)) 000 MW RTPD Upward Forecast Error
2. Continuous classifier: Quantile Regression of forecast 0 500 1000 1500 2000
error as function of solar Weather Indicator Sorele
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to adjust net load ramp distribution during mid-day & WD B
Upward Error Quantile Regression Results

Two Way Classification Results
11 a.m.-2 p.m. May 2019: 11 a.m.-2 p.m. May 2019 (dashed blue lines are, from top to
bottom respectively: 90t, 75th, 50th, 25th estimated percentiles)

97.5% Cutoff (Ramp Requirement) for Each Day Type
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(Actual implementations are multivariate regression or machine learning methods)
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4. What are the benefits of weather-informed ramp requirements?

5.
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Machine learning approach: Classify (by kNN method) days based on xstnes ;
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solar uncertainty (width of 25t — 75t percentile; AClear sky index)

e o
W * Evaluation metric 1: . ) i
£ ’ Reduction of requirements _é T d i +
£, X August 2019: g4 9 E E H i
f + ) S FR-Up reduced up to 20% f Pl ) ﬁ
g = E 5 Q i = FR-Down reduced up to 20% 1., | 1
N : * ;
R = T e, T
fr0
e e Evaluation metric 2: m ==
Fraction of hours with
§ o reserve shortage: i
oo FR-Up: slight average £ o
Eove decrease
FR-Down: more consistent

89 910 1011 1112 12413 1314 1415 15-16 decreases © 789 900 101 1Mz 1213 1314 1415 1516 -




What are the resulting $ benefits? (NREL)
Experimental design for system simulations
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Compare two cases in market simulations:

- Baseline (B): CAISO markets use existing calendar-
based “unconditional” method to estimate ramp
requirements

- Alternative (A): CAISO markets use proposed weather-
aware (Watt-Sun informed) “conditional” method to
estimate ramp requirements

Aperformance

Performance: uncertainty-
induced cost estimated by
FESTIV for 118 bus system

Value observed during a simulation day
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Compare cost of ramping requirement cases. Did one case require more ramp?

MW Ramp: @ N

Cost might increase Cost might decrease
under alternative under alternative method
method May 4, 5 2020

N\

Similar
cost

Compare reliability of cases. What was the actual ramping need, and was one case

more reliable? § I

Reliability might Reliability might
improve under deteriorate under
alternative method alternative method
May 19, 20 2020

Similar
reliability

E. Spyrou et al. What Is the Value of Alternative Methods for Estimating Ramping Needs?, Greentech 2020, IEEE -




118-bus results for 19t May:

Reliability improved
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Crargy

Simulation where alternative (conditional) method
improves reliability

Price spikes
1000 Mean forecast for solar generation . reduce in
5 - \9%hMay RTDprice _simulations with
= 50 7000 .
- alternative
0 o rampin
Baseline downward uncertainty for solar generation 5000 p g
200 - requirements
) £ 4000
= 2
g 100 m < 3000
2000
0
5 Alternative downward uncertainty for solar generation 1000
200 A e 0 A
= rr - 24 hrs
,'; 100 “ \ m haseline e glternative
0 . L L
0 5 m[lours 15 20
(Simulations for 1800 bus system underway) -
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5.

Conclusion
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Cost Savings &
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Simulation

: : Ramp Alerts &
Uncertainty Visualiza- Flexibility Needs
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