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Outline

*** As basic as it gets: How to operate power grids with new
generation mix reliably and efficiently? Which software?

**Value of data-enabled software?
***Challenge problem at FERC Conference 2019-recap™

¢ Solution to the challenge problem stated at FERC conference
2019 (IEEE 14 node system)

***Challenge problem for FERC conference 2021 —continuing!
*** Lessons learned and recommendations

* llic, M. Ten Years Later: Rethinking Principles of Smart Architectures and Data-
enabled Software, FERC Conf 2019



Basic challenge problem for software to
operate changing electric power systems

*** Given predicted demand pattern for day ahead
*** Given retiring power plants and wind power plants deployed
*** Schedule existing resources to optimize daily fuel cost so that

* Power is deliverable (AC power flow solved, thermal and voltage limits) and
ramp rate limits are accounted for

** Find minimal load that must be shed to ensure the problem is solved
*** Find the most critical constraints limiting delivery

*** Compute reserve requirements so that during (N-1)/(N-2) contingencies power
can be delivered

*** Assess economic impacts on generation and demand, and MS



Challenge problem stated at FERC Conference 2019

¢ Can one do better than using Dynamic Monitoring and Decision Systems
(DyMonDS) operating paradigm?

*** Three basic steps

*** Predicted future prices communicated to the end users; or collected/learned
by the end users

+* Distributed decision making by the end users to create physically

implementable bid functions (using MPC-look ahead); levelized cost bid
functions

*** Minimally coordinated by solving AC OPF; physically implementable/(N-1)/(N-
2) secure

¢ Computations on-line for DAM/RTM



The challenge of reliable/resilient operations

“*HV IEEE 14 bus system

--Generator 1 is a large coal unit of 250 MW. But, for the purposes of reliability, 120
MW of its capacity is set aside, making only about 232 MW available for operations

--Generator 2 is a dirty expensive unit which has been completely

decommissioned and has been replaced with an uncontrolled wind farm, whose
patterns can only be predicted to desired levels of accuracy.

--Generators at locations 3, 6 and 8 are expensive as well and
are thus decommissioned, replacing them with DERs of 20 MW

capacity each to provide voltage support in times of need.



IEEE 14-bus test system
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Locational distribution of system demand-
Delivery problem!

Locational reactive power load profile

Locational real power load profile : :
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Effect of voltage optimization on LMPs
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Generation dispatch with/w/o voltage optimization




Effect of voltage optimization on load shedding
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Effect of STATCOM/EV clusters on LMPs and
dispatch

Generation Schedules
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Accounting for ramp rates in a look-ahead way
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Effect of voltage optimization on electricity prices and stakeholders
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Fig. 18: Cleared prices obtained with voltages optimized in static
centralized dispatch: Each line plot corresponds to one timestep
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Fig. 19: Cleared prices obtained with voltages optimized in static
centralized dispatch: : Each line plot corresponds to one timestep
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Metric Static cen- | Static central- | MPC-based
tralized ized clearing | clearing
clearing with- | WITH voltage | with  voltage
out  voltage | dispatch dispatch
dispatch

Load Shed 0.21 0 0

Operating 177,850 177,931 184,379

cost

Generator 216,364 217,445 221,682

revenues

Generator 28,514 39,514 37.302

profit (+21.65%) (+22.21%) (+20.23

%)

Consumer 251,882 250,071 230,172

bills

Marginal sur- | 35,517 32,625 8489.90




Dependence on contingency screening method
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SUMMARY OF RESERVES FOR (N-2) CONTINGENCIES

Time step Without voltage dispatch With voltage dispatch
Operating secunty SpINNInNE Cperating SECUrity Spinming
resarves reserdes Reservas Reserves Reserves Reserves
1 Max of 2,63 21.2 MW 204,11 MW Maxwof 51,2 | 44.8 MW [Gen 204,11 AW
MW at Bus 3 | (Gen 3, Branch [Branch 1-2, MW at Bus 8 | 3, Branch 1-2) {Branch 1-2,
1-2) Branch &-11) Branch 6-11)
7 Max of 2,65 21.13 MW 207 .98 MW Max of 35,7 22.06 MW 72.84
MW at Bus 3 | (Gen 3, Branch | (Branch 1-2, MW atBus3 | (Branch 1-2, {Gen 3, Gen 4)
1-2) Branch 6-11) Branch 1-5)
13 Max of 2.67 T4.99 MW 252.91 MW Max of 55.04 27.98 MW 111.1%
MW at Bus 8 | {Gen 3, Branch [Branch 1-2, MW at Bus & {Branch 1-2, {Gen 3, Gen 4)
1-2) Branch &-11) Bramch 1-5)
15 Max of 3.26 TE.66 MW 265.12 MW Max of 52.2 29,26 MW 114.73
MW at Bus 8 | (Gen 3, Branch {Branch 1-2, MW at Bus 8 {Branch 1-2, {Gen 3, Gen 4)
1-2) Branch 6-11) Branch 1.5}




Effect of secure voltage dispatch on market outcomes
Without Voltage

Load Shed with
reserve procurement

Load Shed without
reserve procurement

Operating cost
Revenues

Generator Profit

Cost of Reserves
Consumer Bills

Marginal Surplus

Dispatch
0

65,918. 50 MWh

$ 136,451.05
$171,287.31

S 34,833.32
(+25.52%)

$ 360,033.11
$ 239,757.28
S 68,469.97

With Voltage
Dispatch

0

98,670.66 MWh

S 135,871.84
S 115,358.95

$-20,512.89
(-15.10%)

S 189,530.93
$173,116.58
$57,757.63

% change

+49.68

-0.42
- 32.65
-158.88

-47.3%
-0.72
- 8.14



MAIN OBSERVATIONS--operations

“*THE VALUE OF INTERMITTENT RESOURCES AND NON-WIRE
SOLUTIONS CRITICALLY DEPENDENT ON HOW OPERATIONS ARE
DONE

*** Voltage limits and ramp rates most critical.
** Operating battery cost not as critical as SOC constraints.

**Voltage constraints determine when batteries can be scheduled.
Cleared prices significantly different with and without voltage
management.

**Predictions/decision time horizons important. Data-enabled ML.

**Market outcomes non-robust w.r.t to how good predictions are.
i



Functions comprising today’s Today software and its Proposed minimally coordinated Major benefits

electricity service limitations distributed operations (inclusion of multiple
technologies)

1) Supply-demand balancing Static; not co-optimized with  Model predictive control; dynamic Major cost savings; non-volatile
(capacity-based; no reliance on 3), 5) and 6); nuclear and dispatch; co-optimization with 3), (positive LMPs);
flexible non-generation; non- hydro power under-utilized 5), 6)

wire solutions)

2) Delivery losses

3) Grid ““congestion” (thermal, Voltage not co-optimized to AC Optimal Power Flow: Compute Much larger use of available
voltage) support 1), 2), 5), 6) critical locations, type and amounts resources, all else the same
4) Ancillary services (stability, Expensive fast generation Mix of DERs, clusters of EVs. Reduced wear-and-tear; high
QoS) units (combined cycle), not “Synthetic” reserve QoS; use of power electronics

co-optimized with 3)

5) Reliability Analysis; “worst case” Optimized preventive reserve; MAJOR CUMMULATIVE SAVINGS;
approach; Not optimized voltage support GRADUAL CONTROLLED SERVICE
reserves, voltage Data-enabled corrective dispatch DEGRADATION; NO WIDE-

SPREAD BLACKOUTS

6) Resiliency 7?77 Optimized preventive reserve; POSSIBLE TO SERVE CRITICAL
Imminent wide-spread voltage support; LOADS; RELIANCE ON STORAGE;
blackouts Data-enabled corrective dispatch; DIFFERENTIATED RELIABILITY OF

reliance on micro-grids and storage ~ SERVICE
|



Recommendations and next steps

* System operator/market needs an advisory tool regarding flexible
utilization of resources. No longer proxy limits!

***Distributed MPC at the bidding stage extremely useful and
overcomes huge SCUC computational problems when seeking
deliverable power solutions. Implementable bid functions.

**AC OPF can be used to identify candidate non-transmission
solutions (clusters of EVs; STATCOMs; synchronous condensers)

***Deliverable reliability reserves that work!



Next steps

***Continuing challenge (FERC Conf 2021) —can we do better
than DyMoNDS? (interested in following up between now
and then...)

**Remaining research problem: Creating robust bid physically
implementable bid functions

*»*Simulations of physically implementable bid functions available
at request
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