Risk of Internal Erosion Failure of West Pass Dike Upper Baker Development, Baker River Project, P-2150

RIDM Level 2 Workshop – Spring 2013

Baker River Project

 Upper Baker Dam is a 297-foot-high, "High" hazard concrete gravity dam, with a 285,500 acre-foot reservoir. Located in northwestern WA near Canada.

 West Pass Dike is a 115-foot-high earth and rockfill saddle dam located near the right abutment.

Owned by Puget Sound Energy (PSE)

Upper Baker Development

Upper Baker Dam

West Pass Dike

Plan View of WPD

West Pass Dike - Rolled Rockfill

 There is no clear description or measured soil gradations of the rolled rockfill

 Based on visual observation it consists of sandy gravel with cobbles

West Pass Geology

West Pass Geology

West Pass Geology

West Pass Geologic Cross-Section

West Pass Geologic Cross-Section

Internal Erosion PFM Along Abutment Contact

- Seepage through the embankment results in internal erosion of the embankment core into the fractured andesite lava flow of the right abutment.
- Sufficient core material flows into the fractured abutment creating a cavity at the abutment/embankment contact allowing the downstream filters to collapse into the cavity.
- The entire cavity collapses, creating a sinkhole in the upstream face of the embankment, compromising the downstream filter zones, and allowing additional flow along the bedrock/embankment contact.
- The flow along the abutment erodes the downstream shell material into Depression Lake until the embankment is breached.

Plan View of WPD

Plan View of WPD

Potential Failure Mode

- Reservoir at or above threshold level
- Initiation Erosion into right abutment starts
 - Solution Erosion cavity develops in core at abutment contact compromising downstream filter
 - Progression Filter and core collapse into void
 - Sprogression Unfiltered or inadequately filtered exit now exists
 - Sprogression Erosion develops along abutment contact into downstream shell
 - Sprogression Abutment rock forms a roof and a pipe develops to the downstream face under Depression Lake
 - Served so intervention fails to prevent "break-through"

Dam breaches

PFM Likelihood

 Reclamation studies show rates of initiation of internal erosion at their embankments – 25%

 Annual probability of failure (APF) for this PFM uncertain without better information

Category	General Description	APF
Remote	The physical conditions do not exist for its development or the likelihood is so remote. Several events must occur concurrently or in series to trigger failure. Most, if not all of the events are very unlikely. Or, it would likely take a flood or earthquake with a return period of more than 1,000,000 years to trigger the potential failure mode.	< 10 ⁻⁶
Very Low	The possibility cannot be ruled out, but there is <u>no</u> <u>compelling evidence</u> to suggest it <u>has occurred</u> or that a condition <u>or flaw exists</u> that could lead to its development. Or, a flood or earthquake with a return period of between 200,000 and 1,000,000 years would likely trigger the potential failure mode.	<u>10-6</u> to 10-5
Low	The fundamental condition or <u>defect is known to exist</u> , <u>indirect evidence</u> suggests it is <u>plausible</u> , but evidence is <u>weighted more heavily toward unlikely than likely</u> . Or, a flood or earthquake with a return period between 20,000 and 100,000 years would likely trigger the potential failure mode.	<u>10⁻⁵</u> to 10 ⁻⁴
Moderate	The fundamental condition or defect is known to exist, indirect evidence suggests it is plausible, but evidence is weighted more heavily toward likely than unlikely. Or, a flood or earthquake with a return period between 2,000 and 10,000 years would likely trigger the potential failure mode.	10 ⁻³

PFM Likelihood

Internal erosion PFM could range from APF = 1 E-3 to 1 E-7

Likelihood could be between Very Low and Low

Let's choose Low

Confidence

 High confidence in a likelihood estimate means we are unlikely to revise our estimate with more information.

 Low confidence means we are likely to revise our estimate with more information

 Moderate confidence means we are unsure about the potential to change the estimate

Confidence Estimate

Estimate of Likelihood would be improved with more information

We have <u>Low</u> confidence in the category estimate.

Estimate Consequences

 Following slides show the inundation area from a sunny day failure of West Pass Dike

FERC Screening Level Consequence Tool*

	Low Flood Severity	Medium Flood Severity	High Flood Severity
	(No buildings washed off foundation, less that 10-foot depth of flooding) DV < 50	(Homes destroyed but trees or mangled homes remain, greater than 10-foot depth of flooding) DV > 50	(Instantaneous dam failure, inundation area swept clean of structures, deep flood depth reached very quickly)
No Warning (Excess response time less than 15 minutes)	0.01	0.15	0.75
Some Warning (Excess response time 15 to 60 minutes)	0.005	0.03	0.4
More Warning (Excess response time Greater than 60 minutes)	0.0003	0.02	0.2

* From Wayne Graham's Simplified Procedure for Estimating Loss of Lif

PLL Parameters Discussion

<u>PAR</u>

Campground 100 sites – 30% occupied per year

PAR as follows Kulshan Campground Concrete Down through Hamilton, Mile 12 to 29 Down through Sedro Woolley - Mile 29 to 42 Down past Mt Vernon - Mile 42 + -

- Total -

7975

FERC Screening Level Consequence Tool*

Distance (miles)	Failure Notification Time (min)	PAR Description	PAR	Flood Severity	Adjustment Factor	PLL
0 to 3	0	Campground	30	High	0.75	22
3 to 9	0		0	Low	0.01	0
9 to 12	60	Concrete	62	Medium	0.02	1
12 to 29	100	Hamilton	511	Medium	0.02	10
29 to 42	195	Sedro Woolley	3124	Low	0.0003	20
42 to remain der	255	Mt. Vernon	4248	Medium	0.02	64

Total

* From Wayne Graham's Simplified Procedure for Estimating Loss of

PLL Parameters Discussion

 <u>DamBreak</u> - Based on WPD breach flood depths – conservative parameters

 Flood Severity - Based on Depth Velocity (DV) calculation – Flow/topwidth in feet

 Warning Time - Generally between little warning time at the Campground and 5 hours in Mt. Vernon

Economics

- Residents 7945
- Homes affected likely about 2500+
- Towns, Cities, and Communities
 - Camp Horn Community
 - Town of Hamilton
 - City of Sedro Woolley
 - Partial City of Burlington
 - Partial City of Mt. Vernon
- Damage estimate \$2 Billion without considering dam replacement and lost power

Consequence Category

1-10	 Direct loss of human life possible, related primarily to difficulties in warning and evacuating recreationists and few scattered individual houses close to the dam or downstream population centers with extensive warning time. Minor to significant damage to permanently occupied structures, roadways and bridges throughout the inundation zone (~\$50 to \$100 M). Local to regional disruption of essential facilities and access. Medium environmental damage Less than 1 year recovery. 	7
10-100	 Loss of human life is expected due to the severity of the flooding and nearby population centers (10-100 people). Downstream discharges result in significant property damage (~\$100 M to \$500 M) Regional disruption of essential facilities and access. Significant environmental damage 1 - 2 year recovery . 	8
100-1000	 Significant loss of human life is expected due to the severity of the flooding and moderate population affected within close proximity of the dam. Significant property damage over a large area (~\$500 M to \$1 B) Multi-regional disruption of essential facilities and access. Large environmental damage Multi-year recovery 2-5 years. 	9

Likelihood for WPD Internal Erosion
 PFM = Low

 Consequences - PLL > 100
 Consequence Category = 8 (PLL) = 10 (Economics)

Confidence Estimate

 Estimate of Consequence would be improved with more information but might not change the category

We have <u>Medium</u> to <u>Low</u> confidence in the category estimate.

Risk Matrix Estimate

Questions?

