Simple Probabilistic Analysis of a Gravity Dam

FEDERAL ENERGY REGULATORY COMMISSION OFFICE OF ENERGY PROJECTS DIVISION OF DAM SAFETY AND INSPECTIONS

Traditional Deterministic Approach

For Sliding of the structure of the Foundation

Fixed parameters

■ Weight of concrete: 150 lb/ft³

■ Weight of water: 62.4 lb/ft³

- Variable parameters
 - Uplift
 - Foundation strength
 - Cohesion
 - Asperities

Traditional Analysis

- Little or no cohesion used
- Conservative shear strength estimate
- Full headwater to tailwater uplift used, or based on piezometer readings.
- Drain effectiveness must be estimated
- Results are expressed as a factor of safety with a pass/fail criterion.

"One of the main sources of uncertainty in the analysis of gravity dam stability is the amount of cohesive bond present at the dam foundation interface. The FERC recognizes that cohesive bond is present, but it is very difficult to quantify through borings and testing." FERC Engineering Guidelines Chapter 3

Table 3

Typical Rock Shear Strength Parameters 1/

TYPE OF ANALYSIS COMPRESSIVE					COMPRESSIVE
ROCK TYPE	CONC/ROCK	INTERFACE	INTACT	ROCK	STRENGTH
	(deg)	C (psi)	(deg)	C(psi)	f'c(psi)
Range			31-	3953-	24450-
Basalt	-	-	61	6340	31850
Average			53.2	4931	28150
Range	31-56	28-242	29-	1040-	6190-
Granite	43	.5	70	5800	40,000
Average	47	105	56.1	2118	15,765
Range	39-52.5	28-71	33-	1100-	6000-
Limestone			60	2950	19320
Average	46	50	50.5	2282	12,230
Range	30-53	13-115	25-	600-	3000-
Sandstone			60	6000	30,000
Average	41	53	49	2394	11670
Range	23-63	10-100	27-	1160-	5220-
Shale	4.	3	69	3390	17770
Average	49	38	53	2275	11,495
Range	45-60	20-284	50.2-	350-	2180-
Schist	52	5	66.5	2090	12010
Average	51	217	59.6	1018	7100

USACE "Gravity Dam Design" 1974

- Foundation properties may not always be clear cut.
- This SPT test log shows blow counts from 20-100.
- What would be chosen based on engineering judgement?

SPT Penetration, N-Value (blows/ foot)	Density of Sand	\$ (degrees)
<4	Very loose	<29
4 - 10	Loose	29 - 30
10 - 30	Medium	30 - 36
30 - 50	Dense	36 - 41
>50	Very dense	>41

For Sand

SPT Penetration,	\$ (degrees)
N-Value (blows/ foot)	
<4	25-30
4 - 10	27-32
10 - 30	30 - 35
30 - 50	35 - 40
>50	38 - 43

For Granular Soils

Traditional Analysis (cont.)

Assumptions C = 0Full Uplift $\Phi = 32^{\circ}$

$$SFF = \frac{CA + \sum F_{Normal} \bullet \tan \phi}{\sum F_{Shear}}$$

SFF = 1.5

Deterministic Approach Meets Engineering Guidelines

Which Dam is Safer?

$$SFF = \frac{CA + \sum F_{Normal} \bullet \tan \phi}{\sum F_{Shear}}$$

• $\Phi = 32^{\circ}$ • SFF = 1.5 • $\sigma_{SFF} = 0.15$ • C = 0

• $\Phi = 40^{\circ}$ • SFF = 2.0 • $\sigma_{SFF} = 0.40$ • C = 0

Fenton and Griffiths, GeoRisk 2011

Methods to address uncertainty in Deterministic Analyses

Sensitivity Analysis on parameters
Use of Conservative estimates
Better sampling program

Sensitivity Analysis

- Sensitivity tells you if analysis is sensitive to the variable.
- Does not provide information about uncertainty of variable.

Conservatism vs. Probabilism

The Phi angle for a certain foundation is listed as between 30 and 50 degrees. Is choosing 32 conservative?

■ It depends...

Conservatism does not change Distribution

Key Points

Just because you have a high SFF doesn't necessarily mean you have a safe dam.
Reducing uncertainty can be more important than the shear strength.

Key Points

- Probabilistic analysis results expressed in Probability of Failure, not SFF.
- Best Estimates, not conservative values are used.
- Estimates of range of values needed (i.e. Standard Deviation or comparable).
- Please note: Gravity dams in particular are more susceptible to unknown weak seams than foundation material variability.