

FERC: 2017 Reliability Technical Conference

Michael K. Rivera

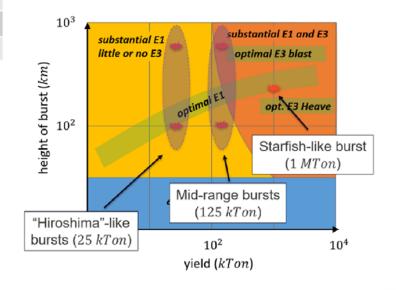
A-1: Information Systems and Modeling
Los Alamos National Laboratory

LA-UR-17-24988 and LA-UR-17-24992 UNCLASSIFIED

Yield (kTon)	Height of Burst (<i>km</i>)	E1	E3 Blast @ Edge of E1	E3 Heave Centered on E1
25	100	Regional—high	Low	Low
25	400	CONUS—low	Low	Low
125	100	Regional—high	Low	Med/High
125	400	CONUS—low	Med/High	Low/Med
1000	200	Interconnect—med	Med	High
10	endo	City	none	none

Possible EMP workflow:

Evaluate E1/E2/E3 fields for sample scenario


Stochastic damage/upset model for relays

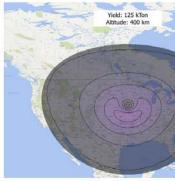
Calculate E induced currents in I impacted system Evaluate transformer thermal heating from E3 currents Final damage (thermal transformer damage + relay damage)

Note: Tri-lab effort is currently on schedule to deliver end-end capability in

Sept. 17

- No workflow comparable to TPL-007-1
- Working with DOE/OE, DHS, and EPRI (Horton) to develop a scientifically-based workflow

LA-UR-17-24988 UNCLASSIFIED



Gamma Source: 0.3% Yield, 0.2/sh rise, 2/sh fall IGRF12 Magnetic Field

Radiated Hazard (CHAP): Peak Electric Field

Contour Levels every 1 kV/m

Max	imum	Field	Values
	100	2	3/20

Yield (kTon)	H.O.B. (km)	Maximum Peak Electric Field (kV/m)
25	100	11.8
25	400	1.7
125	100	20.7
125	400	5.6
1000	200	25.3

Yield: 25 kTon Altitude: 400 km

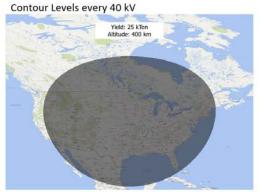
LA-UR-17-24992 UNCLASSIFIED

50 meter High Aerial Line (10 km long) End Impedance: 1 G Ω

Worst Case Peak Voltage (Not Realizable)

Yield (kTon)	H.O.B. (km)	Worst Case Peak Voltage (kV)
25	100	1264
25	400	181
125	100	2199
125	400	591
1000	200	2694

Maximum Field Values


LA-UR-17-24992 UNCLASSIFIED

50 meter High Aerial Line (10 km long)

End Impedance: 1 G Ω

Maximum Peak Voltage

Yield (kTon)	H.O.B. (km)	Maximum Peak Voltage (kV)
25	100	223
25	400	21.6
125	100	606
125	400	98.3
1000	200	954

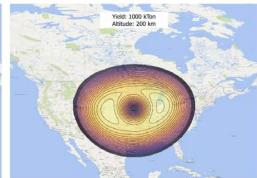
Maximum Field Values

LA-UR-17-24992 UNCLASSIFIED

50 meter High Aerial Line (10 km long)

End Impedance: $1 G\Omega$ Expected Peak Voltage

Contour Levels every 17 kV


Yield: 25 kTon Altitude: 100 km

Yield (kTon)	H.O.B. (km)	Expected Peak Voltage (kV)
25	100	134
25	400	15.1
125	100	295
125	400	55.3
1000	200	413

LA-UR-17-24992 UNCLASSIFIED

