

Parallel Temporal Decomposition for Improved Unit Commitment in Power System Production Cost Modeling

Kibaek Kim

Argonne National Laboratory FERC's 2017 Technical Conference

GMLC: Multi-Scale Production Cost Models

- **GMLC: Grid Modernization Laboratory Consortium**
	- \blacksquare An aggressive five-year grid modernization strategy for the Department of Energy
- Design and planning tools sub-area includes Multi-Scale Production Cost Models
	- Develop multi-scale production cost models with faster mathematical solvers
- **PCM** Goal:
	- \blacksquare Substantially increase the ability of production cost models (PCM) to simulate power systems in more detail faster and more robustly.
	- Both Deterministic and Stochastic
- Talks at Technical Conference:
	- Session T1-B: Optimization Driven Scenario Grouping for Stochastic Unit Commitment (LLNL)
	- Session T2-B: Assessment of Wind Power Ramp Events in Scenario Generation for Stochastic Unit Commitment (SNL)
	- Session T3-A: Geographic Decomposition of Production Cost Models (NREL)
	- Session T3-A: Temporal Decomposition of the Production Cost Modeling in Power Systems (ANL)

Power System Operations

PCM: Unit Commitment and Economic Dispatch

- **Unit Commitment:** scheduling generators on/off
- *Economic Dispatch:* scheduling power generation at each generator
- ▶ *Security Constraints:*
	- Flow balance constraints
	- Power flow constraints
	- Ramping constraints
	- Minimum up/down constraints
	- Spinning reserve constraints

WECC System

5

Multi-Scale Production Cost Modeling (PCM)

▶ **Goal**

 \blacksquare to simulate a broad range of scenarios in order to plan electricity system over *a long-term planning horizon*

▶ **Challenges**

- The complexity and resolution required to model the modern power system is rapidly increasing.
- Model fidelity vs. execution time
- Needs to solve long-term unit commitment and economic dispatch

June 20, 2017 **6**

Temporal Decomposition

Long-Term UC Model Formulation

$$
\min \sum_{g \in G} \sum_{t \in T} (K_g u_{gt} + S_g v_{gt} + C_g p_{gt})
$$
\n
$$
\text{Operating cost}
$$
\n
$$
\text{s.t. } \sum_{l \in L_n^+} f_{lt} - \sum_{l \in L_n^-} f_{lt} + \sum_{g \in G_n} p_{gt} = D_{nt}, n \in N, t \in T, \quad \text{Flow balance equation}
$$
\n
$$
f_{lt} = B_l (\theta_{nt} - \theta_{mt}), l = (m, n) \in L, t \in T, \quad \text{Linearized power flow equation}
$$
\n
$$
-F_l \le f_{lt} \le F_l, l \in L, t \in T, \quad \text{Transmission line capacity}
$$
\n
$$
s_{gt} \le p_{gt} \le r_{gt}, g \in G, t \in T, \quad \text{Operating reserve requirement}
$$
\n
$$
r_{gt} \le P_g^{min} u_{gt}, g \in G, t \in T, \quad \text{Generation capacity}
$$
\n
$$
s_{gt} \ge P_g^{min} u_{gt}, g \in G, t \in T, \quad \text{F}_g + p_{g,t-1} \le R_g^+, g \in G, t \ge 2
$$
\n
$$
s_{gt} - p_{g,t-1} \ge -R_g^-, g \in G, t \ge 2
$$
\n
$$
\sum_{l \in L - U T_g + 1} v_{gq} \le u_{gt}, g \in G, t \ge UT_g, \quad \text{Minimum uptime}
$$
\n
$$
a = t - UT_g + 1
$$
\n
$$
\sum_{l \in L - D T_g + 1} u_{gq} \le 1 - u_{gt}, g \in G, t \ge DT_g,
$$
\n
$$
v_{gt} - w_{gt} = u_{gt} - u_{gt}, -1, g \in G, t \ge 2, \quad \text{Committment logic}
$$

Temporal Decomposition – Linking Constraints

$$
\min \quad \sum_{g \in G} \sum_{t \in T} (K_g u_{gt} + S_g v_{gt} + C_g p_{gt})
$$
\n
$$
\text{s.t.} \quad \sum_{l \in L_n^+} f_{lt} - \sum_{l \in L_n^-} f_{lt} + \sum_{g \in G_n} p_{gt} = D_{nt}, \ n \in N, \ t \in T,
$$
\n
$$
f_{lt} = B_l \left(\theta_{nt} - \theta_{mt}\right), \ l = (m, n) \in L, \ t \in T,
$$
\n
$$
-F_l \le f_{lt} \le F_l, \ l \in L, \ t \in T,
$$
\n
$$
s_{gt} \le p_{gt} \le r_{gt}, \ g \in G, \ t \in T,
$$
\n
$$
r_{gt} \le P_g^{max} u_{gt}, \ g \in G, \ t \in T,
$$
\n
$$
s_{gt} \ge P_g^{min} u_{gt}, \ g \in G, \ t \in T,
$$
\n
$$
r_{gt} - p_{g,t-1} \le R_g^+, \ g \in G, \ t \ge 2
$$
\n
$$
s_{gt} - p_{g,t-1} \ge -R_g^-, \ g \in G, \ t \ge 2
$$
\n
$$
\sum_{g \in T - U T_g + 1} v_{gq} \le u_{gt}, \ g \in G, \ t \ge UT_g,
$$
\n
$$
q = t - UT_{g} + 1
$$
\n
$$
v_{gt} \le q = u_{gt} - u_{gt}, \ g \in G, \ t \ge DT_g,
$$
\n
$$
u_{gt} - w_{gt} = u_{gt} - u_{gt, t-1}, \ g \in G, \ t \ge 2,
$$
\n
$$
u_{gt}, v_{gt}, w_{gt} \in \{0, 1\}, \ g \in G, \ t \in T
$$

Coupling Constraints that link the variables in different time periods

Temporal Decomposition – Linking Constraints

Subintervals of the time horizon:

- 1. $T_j \subset T$ for $j \in J$;
- 2. $\bigcup_{j\in J}T_j = T$; and
- 3. $T_i \cap T_j = \emptyset$ for $i \neq j \in J$.

Equivalent PCM formulation:

$$
\min \sum_{g \in G} \sum_{t \in T} (K_g u_{gt} + S_g v_{gt} + C_g p_{gt})
$$
\n
$$
\text{s.t.} \quad r_{gt} - p_{g,t-1} \le R_g^+, \ g \in G, \ t \in T_j, \ t - 1 \notin T_j, \ j \in J,
$$
\n
$$
s_{gt} - p_{g,t-1} \ge -R_g^-, \ g \in G, \ t \in T_j, \ t - 1 \notin T_j, \ j \in J,
$$
\n
$$
\sum_{q=t-UT_g+1}^t v_{gq} \le u_{gt}, \ g \in G, \ t \in T_j, \ t - UT_g + 1 \notin T_j, \ j \in J,
$$
\n
$$
\sum_{q=t-DT_g+1}^t w_{gq} \le 1 - u_{gt}, \ g \in G, \ t \in T_j, \ t - DT_g + 1 \notin T_j, \ j \in J,
$$
\n
$$
v_{gt} - w_{gt} = u_{gt} - u_{g,t-1}, \ g \in G, \ t \in T_j, \ t - 1 \notin T_j, \ j \in J,
$$
\n
$$
(\mathbf{u}_j, \mathbf{v}_j, \mathbf{w}_j, \mathbf{p}_j, \mathbf{r}_j, \mathbf{s}_j) \in \mathcal{X}_j, \ j \in J, \quad \text{mixed-binary set}
$$

We simplify the formulation.

$$
\min \sum_{j \in J} \sum_{k \in K} \mathbf{c}_j \mathbf{x}_j
$$
\n
$$
\text{s.t.} \quad \sum_{j \in J} \sum_{k \in K} \mathbf{A}_j \mathbf{x}_j \ge \mathbf{b},
$$

$$
\mathbf{x}_j \in conv(\mathcal{X}_j),\ j \in J
$$

Decomposition Methods

Simplified Original Formulation:

$$
\min \sum_{j \in J} \sum_{k \in K} \mathbf{c}_j \mathbf{x}_j
$$
\n
$$
\text{s.t.} \quad \sum_{j \in J} \sum_{k \in K} \mathbf{A}_j \mathbf{x}_j \ge \mathbf{b},
$$

 $\mathbf{x}_j \in conv(\mathcal{X}_j), j \in J$

Dantzig-Wolfe Decomposition

$$
\min \sum_{j \in J} \sum_{k \in K} \mathbf{c}_j \mathbf{x}_j^k \alpha_j^k
$$

$$
\text{s.t.} \quad \sum_{j \in J} \sum_{k \in K} \mathbf{A}_j \mathbf{x}_j^k \alpha_j^k \ge \mathbf{b} \; (\lambda),
$$

$$
\sum_{k \in K} \alpha_j^k = 1 \ (\mu_j), \ j \in J
$$

$$
\alpha_j^k \ge 0, \ j \in J, \ k \in K,
$$

Dual Decomposition

$$
\max_{\lambda \ge 0} \min \sum_{j \in J} \mathbf{c}_j \mathbf{x}_j + \lambda^T \left(\mathbf{b} - \sum_{j \in J} \mathbf{A}_j \mathbf{x}_j \right)
$$

s.t. $\mathbf{x}_j \in conv(\mathcal{X}_j), j \in J$

Dual Decomposition

- **•** Outer approximation
- Row generation procedure
- § Dual solution space
- Regularization

Dantzig-Wolfe Decomposition

- Inner approximation
- Column generation procedure
- Primal solution space
- **•** Branching, heuristics

Dual Decomposition

Simplified Original Formulation:

$$
\min \sum_{j \in J} \sum_{k \in K} \mathbf{c}_j \mathbf{x}_j
$$
\n
$$
\text{s.t.} \sum_{j \in J} \sum_{k \in K} \mathbf{A}_j \mathbf{x}_j \ge \mathbf{b},
$$
\n
$$
\mathbf{x}_j \in conv(\mathcal{X}_j), \ j \in J
$$

Dual Decomposition

$$
\max_{\lambda \ge 0} \min \sum_{j \in J} \mathbf{c}_j \mathbf{x}_j + \lambda^T \left(\mathbf{b} - \sum_{j \in J} \mathbf{A}_j \mathbf{x}_j \right)
$$

s.t. $\mathbf{x}_j \in conv(\mathcal{X}_j), j \in J$

Maximizing the Lagrangian dual bound

max $\lambda \geq 0$ $\overline{6}$ \int \mathcal{L} \sum $j \in J$ $D_j(\lambda) + \mathbf{b}^T\lambda$ $\overline{1}$ \overline{a} $D_j(\lambda) := \min \left\{ \left(\mathbf{c}_j - \lambda^T \mathbf{A}_j \right) \mathbf{x}_j : \mathbf{x}_j \in conv(\mathcal{X}_j) \right\}$ *Decomposed* for each *j.*

Proximal bundle model:

Outer approximate \max \sum $j \in J$ $\mu_j + \mathbf{b}^T\lambda - \frac{1}{2}\|\lambda - \hat{\lambda}\|_2^2$ s.t. $\mu_j \le D_j(\lambda^k) - (\mathbf{A}_j \mathbf{x}_j)^T (\lambda - \lambda^k), j \in J, k \in K$, $\lambda \geq 0$

Dantzig-Wolfe Decomposition

Simplified Original Formulation:

min $\sum \sum {\bf c}_j {\bf x}_j$ *j*2*J k*2*K* $\text{s.t.} \quad \sum \sum \mathbf{A}_j \mathbf{x}_j \geq \mathbf{b},$ *j*2*J k*2*K*

 $\mathbf{x}_j \in conv(\mathcal{X}_j), j \in J$

Dantzig-Wolfe Decomposition

$$
\begin{aligned}\n\min \quad & \sum_{j \in J} \sum_{k \in K} \mathbf{c}_j \mathbf{x}_j^k \alpha_j^k \\
\text{s.t.} \quad & \sum_{j \in J} \sum_{k \in K} \mathbf{A}_j \mathbf{x}_j^k \alpha_j^k \ge \mathbf{b} \ (\lambda), \\
& \sum_{k \in K} \alpha_j^k = 1 \ (\mu_j), \ j \in J \\
& \alpha_j^k \ge 0, \ j \in J, \ k \in K,\n\end{aligned}
$$

Pricing Problems: *Add new column if*

$$
\mu_j^k > \min\left\{ \left(\mathbf{c}_j - (\lambda^k)^T \mathbf{A}_j \right) \mathbf{x}_j : \mathbf{x}_j \in conv(\mathcal{X}_j) \right\}
$$

- Decomposed for each j
- ▶ Same as the *dual decomposition subproblems*

Valid Lagrangian Dual Bound:

$$
z_{DW} \ge \sum_{j \in J} \left(\mathbf{c}_j - (\lambda^k)^T \mathbf{A}_j \right) \mathbf{x}_j^k + \mathbf{b}^T \lambda^k
$$

Best Lagrangian Dual Bound:

$$
z \ddot{\sum} z_{DW} = \sum_{j \in J} \left(\mathbf{c}_j - (\lambda^k)^T \mathbf{A}_j \right) \mathbf{x}_j^k + \mathbf{b}^T \lambda^k
$$

Positive duality gap may exist.

June 20, 2017 **13**

Integrating Branch-and-Bound Method

Simplified Original Formulation:

$$
\min \sum_{j \in J} \sum_{k \in K} \mathbf{c}_j \mathbf{x}_j
$$
\n
$$
\text{s.t.} \quad \sum \sum A_j \mathbf{x}_j \ge 1
$$

 $\min \quad \sum \sum \mathbf{c}_j \mathbf{x}_j^k \alpha_j^k$

*j*2*J k*2*K*

 $j \in J$ $k \in K$

 $k \in K$

*j*2*J* $k \in K$ $\mathbf{A}_j\mathbf{x}_j \geq \mathbf{b}$

 $\mathbf{x}_j \in conv(\mathcal{X}_j), j \in J$

s.t. $\sum \sum A_j \mathbf{x}_j^k \alpha_j^k \geq \mathbf{b}(\lambda),$

Dantzig-Wolfe Decomposition

 $\sum \alpha_j^k = 1 \ (\mu_j), \ j \in J$

 $\alpha_j^k \geq 0, \ j \in J, \ k \in K,$

Recovering Original Variables:

$$
\mathbf{x}_j = \sum_{k \in K} \mathbf{x}_j^k \alpha_j^k \in conv(\mathcal{X}_j)
$$

Convex combination of feasible solutions

Not necessarily integer feasible

Branching in DW Decomposition:

Adding branching rows

Also adding branching columns to the DD master problem

June 20, 2017 **14**

Flowchart – Temporal Decomposition

*DSP***: Scalable Decomposition Solver**

Decomposition methods for **Structured Programming**

- Exploiting block-angular structures
- ◼ **Dantzig-Wolfe decomposition** *+ (Parallel) Branch-and-Bound*
- **Benders decomposition**
- ◼ **Dual decompositio***Parallel*
- ▶ Parallel computing via MPI library

An open-source parallel optimization solver for stochastic mixed-integer programming

DSP reads models from Julia

where

$$
Q(x_1, x_2, \xi_1^s, \xi_2^s) = \min_{y_1, y_2, y_3, y_4} -16y_1 + 19y_2 + 23y_3 + 28y_4
$$

s.t. $2y_1 + 3y_2 + 4y_3 + 5y_4 \le \xi_1^s - x_1$
 $6y_1 + y_2 + 3y_3 + 2y_4 \le \xi_2^s - x_2$
 $y_1, y_2, y_3, y_4 \in \{0, 1\}$

using Dsp, MPI $#$ Load packages

```
and (\xi_1^s, \xi_2^s) \in \{(7, 7), (11, 11), (13, 13)\} with probability 1/3.
```

```
2 MPI. Init() # Initialize MPI
```
Only 15 lines of Julia script!

```
\mathfrak{m} = Model(3) \# Create a Model object with three scenarios
```

```
4 xi = [[7,7] [11,11] [13,13]] # random parameter
```

```
5 @variable(m, \theta \le x[i=1:2] \le 5, Int)
```

```
6 @objective(m, Min, -1.5*x[1]-4*x[2])
```

```
7 for s in 1:3
```
julià

```
8 \text{ q} = \text{Model(m, s, 1/3)};
```

```
9 @variable(q, y[j=1:4], Bin)
```

```
10 @objective(q, Min, -16*y[1]+19*y[2]+23*y[3]+28*y[4])
```

```
11 @constraint(q, 2*y[1]+3*y[2]+4*y[3]+5*y[4]<=xi[1,s]-x[1])
```

```
12 @constraint(q, 6*y[1]+1*y[2]+3*y[3]+2*y[4]<=xi[2,s]-x[2])
```
13 end

```
14 solve(m, solve_type=:Dual, param="myparams.txt")
```

```
15 MPI. Finalize() # Finalize MPI
```


Computational Results – IEEE 118-Bus System

- **Implementation**
	- Argonne's parallel open-source software: DSP + Coin-ALPS
	- Julia interface for modeling
	- Running on Argonne's Blues cluster (600-node computing node with 16 cores on each)

▶ IEEE 118-Bus System

■ 118 buses, 54 generators, and 186 transmission lines ■ Estimated hourly demand from the PJM system (April 2016)

Table 1: Sizes of IEEE 118-bus system problem instances $\frac{1}{2}$ $\frac{1}{2}$

Solution Time Benchmark – Log Scale

Computational Results - Branch-and-Bound

Computational Results - Branch-and-Bound

Computational Results - Branch-and-Bound

Future Work

Algorithms

- Integrating with generic MIP solution
- Inexact subproblem solutions
- Primal cutting planes
- Primal heuristics
- Further Parallelization
	- Master problems
	- Tree search
- **Investigating Applications**
	- Network decomposition
	- Hybrid decomposition (network, time, scenarios)
	- Other applications

