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GMLC: Multi-Scale Production Cost Models

▶ GMLC:	Grid	Modernization	Laboratory	Consortium
◼ An	aggressive	five-year	grid	modernization	strategy	for	the	Department	of	Energy

▶ Design	and	planning	tools	sub-area	includes	Multi-Scale	Production	Cost	Models
◼ Develop	multi-scale	production	cost	models	with	faster	mathematical	solvers

▶ PCM	Goal:
◼ Substantially	increase	the	ability	of	production	cost	models	(PCM)	to	simulate	power	systems	

in	more	detail	faster	and	more	robustly.
◼ Both	Deterministic	and	Stochastic

▶ Talks	at	Technical	Conference:
◼ Session	T1-B:	Optimization	Driven	Scenario	Grouping	for	Stochastic	Unit	Commitment	(LLNL)
◼ Session	T2-B:	Assessment	of	Wind	Power	Ramp	Events	in	Scenario	Generation	for	Stochastic	Unit	Commitment	(SNL)
◼ Session	T3-A:	Geographic	Decomposition	of	Production	Cost	Models	(NREL)
◼ Session	T3-A:	Temporal	Decomposition	of	the	Production	Cost	Modeling	in	Power	Systems	(ANL)
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Power System Operations
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WECC System

PCM: Unit Commitment and Economic Dispatch

▶ Unit Commitment: scheduling generators on/off
▶ Economic Dispatch: scheduling power generation at each 

generator
▶ Security Constraints:

◼ Flow balance constraints
◼ Power flow constraints
◼ Ramping constraints
◼ Minimum up/down constraints
◼ Spinning reserve constraints

5
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Multi-Scale Production Cost Modeling (PCM)

▶ Goal
◼ to simulate a broad range of scenarios 

in order to plan electricity system 
over a long-term planning horizon

▶ Challenges
◼ The complexity and resolution required 

to model the modern power system is 
rapidly increasing.

◼ Model fidelity vs. execution time
◼ Needs to solve long-term unit commitment and economic dispatch

Nation
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Temporal Decomposition

Information is being shared between sub-horizons.
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Long-Term UC Model Formulation
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Operating cost

Flow balance equation

Linearized power flow equation

Ramping capacity

Minimum uptime
downtime requirements

Commitment logic

Generation capacity

Transmission line capacity
Operating reserve requirement
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Temporal Decomposition – Linking Constraints

min
X

g2G

X

t2T

(K
g

u
gt

+ S
g

v
gt

+ C
g

p
gt

)

s.t.
X

l2L

+
n

f
lt

�
X

l2L

�
n

f
lt

+
X

g2Gn

p
gt

= D
nt

, n 2 N, t 2 T,

f
lt

= B
l

(✓
nt

� ✓
mt

) , l = (m,n) 2 L, t 2 T,

� F
l

 f
lt

 F
l

, l 2 L, t 2 T,

s
gt

 p
gt

 r
gt

, g 2 G, t 2 T,

r
gt

 Pmax

g

u
gt

, g 2 G, t 2 T,

s
gt

� Pmin

g

u
gt

, g 2 G, t 2 T,

r
gt

� p
g,t�1  R+

g

, g 2 G, t � 2

s
gt

� p
g,t�1 � �R�

g

, g 2 G, t � 2
tX

q=t�UTg+1

v
gq

 u
gt

, g 2 G, t � UT
g

,

tX

q=t�DTg+1

w
gq

 1� u
gt

, g 2 G, t � DT
g

,

v
gt

� w
gt

= u
gt

� u
g,t�1, g 2 G, t � 2,

u
gt

, v
gt

, w
gt

2 {0, 1}, g 2 G, t 2 T

Coupling Constraints that link the 
variables in different time periods
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Temporal Decomposition – Linking Constraints

Subintervals  of the time horizon:

min
X

g2G

X

t2T

(Kgugt + Sgvgt + Cgpgt)

s.t. rgt � pg,t�1  R+
g , g 2 G, t 2 Tj , t� 1 /2 Tj , j 2 J,

sgt � pg,t�1 � �R�
g , g 2 G, t 2 Tj , t� 1 /2 Tj , j 2 J,

tX

q=t�UTg+1

vgq  ugt, g 2 G, t 2 Tj , t� UTg + 1 /2 Tj , j 2 J,

tX

q=t�DTg+1

wgq  1� ugt, g 2 G, t 2 Tj , t�DTg + 1 /2 Tj , j 2 J,

vgt � wgt = ugt � ug,t�1, g 2 G, t 2 Tj , t� 1 /2 Tj , j 2 J,

(uj ,vj ,wj ,pj , rj , sj) 2 Xj , j 2 J,

min
X

j2J

X

k2K

cjxj

s.t.
X

j2J

X

k2K

Ajxj � b,

xj 2 conv(Xj), j 2 J

We simplify the formulation.

Equivalent PCM formulation:

mixed-binary set

1. Tj ⇢ T for j 2 J ;

2. [j2JTj = T ; and

3. Ti \ Tj = ; for i 6= j 2 J .
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Decomposition Methods

Dantzig-Wolfe Decomposition
§ Inner approximation
§ Column generation procedure
§ Primal solution space
§ Branching, heuristics
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Simplified Original Formulation:

Dantzig-Wolfe Decomposition

Dual Decomposition
§ Outer approximation
§ Row generation procedure
§ Dual solution space
§ Regularization
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Dual Decomposition

Maximizing the Lagrangian dual bound

Proximal bundle model:
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Simplified Original Formulation:

Outer approximate

Decomposed for each j.
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Dantzig-Wolfe Decomposition
Pricing Problems:
Add new column if

▶ Decomposed for each j
▶ Same as the dual decomposition subproblems

Valid Lagrangian Dual Bound:

Best Lagrangian Dual Bound:
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Simplified Original Formulation:

Dantzig-Wolfe Decomposition
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Integrating Branch-and-Bound Method

Recovering Original Variables:

▶ Not necessarily integer feasible

Branching in DW Decomposition:

▶ Also adding branching columns to the DD master problem
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Dantzig-Wolfe Decomposition
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Flowchart – Temporal Decomposition

Solve Lagrangian Dual Master
By Proximal Bundle Method

Convert Bundle Constraints
To Columns in Dantzig-Wolfe

Solve Dantzig-Wolfe Master

Solve Lagrangian Dual 
Subproblems

In Parallel

Add Bundle Constraints 
to the Lagrangian Dual Master

Choose a Branch-and-Bound Node

Branch or fathom the current node

Has a node?

Initialize a root node

Terminate node?

STOP
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DSP: Scalable Decomposition Solver

▶ Decomposition methods for Structured Programming
◼ Exploiting block-angular structures
◼ Dantzig-Wolfe decomposition

+ (Parallel) Branch-and-Bound
◼ Benders decomposition
◼ Dual decompositioParallel

▶ Parallel computing via MPI library

16
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DSP reads models from Julia
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Only 15 lines of Julia script!
1 using Dsp, MPI # Load packages

2 MPI.Init() # Initialize MPI

3 m = Model(3) # Create a Model object with three scenarios

4 xi = [[7,7] [11,11] [13,13]] # random parameter

5 @variable(m, 0 <= x[i=1:2] <= 5, Int)
6 @objective(m, Min, -1.5*x[1]-4*x[2])
7 for s in 1:3
8 q = Model(m, s, 1/3);
9 @variable(q, y[j=1:4], Bin)

10 @objective(q, Min, -16*y[1]+19*y[2]+23*y[3]+28*y[4])
11 @constraint(q, 2*y[1]+3*y[2]+4*y[3]+5*y[4]<=xi[1,s]-x[1])
12 @constraint(q, 6*y[1]+1*y[2]+3*y[3]+2*y[4]<=xi[2,s]-x[2])
13 end
14 solve(m, solve_type=:Dual, param="myparams.txt")
15 MPI.Finalize() # Finalize MPI
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Computational Results – IEEE 118-Bus System

▶ Implementation
◼ Argonne’s parallel open-source software: DSP + Coin-ALPS
◼ Julia interface for modeling
◼ Running on Argonne’s Blues cluster (600-node computing node with 16 cores on each)

▶ IEEE 118-Bus System
◼ 118 buses, 54 generators, and 186 transmission lines
◼ Estimated hourly demand from 

the PJM system (April 2016)

Table 1: Sizes of IEEE 118-bus system problem instances

T # Constraints # Variables # Binary

24 19765 18960 1296

48 40070 37920 2592

72 60398 56880 3888

96 80726 75840 5184

120 101054 94800 6480

144 121382 113760 7776

168 141710 132720 9072
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Solution Time Benchmark – Log Scale
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Computational Results - Branch-and-Bound
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Computational Results - Branch-and-Bound
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Computational Results - Branch-and-Bound
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Future Work

▶ Algorithms
◼ Integrating with generic MIP solution
◼ Inexact subproblem solutions
◼ Primal cutting planes
◼ Primal heuristics
◼ Further Parallelization

• Master problems
• Tree search

▶ Investigating Applications
◼ Network decomposition
◼ Hybrid decomposition (network, time, scenarios)
◼ Other applications


