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History of Integer Programming in 
Electricity Markets
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1982 1989 1999 2004 2007 2011

Optimal Spot Pricing 
of Electricity 
(Caramanis et al., 
1982)

Mixed-integer programming is, 
“theoretically complicated and 
computationally cumbersome”
-- EPRI Report (GS-6401, 1989)

NYISO implements 
fixed-block pricing 
in its initial market 
design

PJM switches from LR 
to MIP, $90 M/year 
production cost 
savings (Ott, 2010)

CPLEX 6.5 is released, 
implementing “theoretical 
backlog” of performance 
improvements (Bixby, 2012)

Gribik, Hogan and 
Pope (2007) propose 
Convex Hull Pricing

MISO implements 
ELMP based on 
Convex Hull 
Pricing



What’s the trouble with LMP, anyway?
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Price deviations in alternative near-optimal 
unit commitment solutions

Johnson et al. (1997)

▪ Near-optimal solutions using LR

▪ Resource profits vary due to 
changes in prices

▪ Corresponds to wealth transfers 
between consumers and 
generators

▪ Argues against centralized unit 
commitment

Sioshansi et al. (2008)

▪ Near-optimal solutions within the 
MIP gap

▪ Replicates Johnson et al.’s results

▪ Benefits of MIP
• Better consistency, but imperfect

• Lower cost solutions

▪ Addition of make-whole payments 
helps mitigate wealth transfers
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▪ Fixed Model

▪ Approximate Convex Hull 

▪ Approximate Restricted Convex Hull
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Fixed Pricing Model (LMP)
▪ Standard formulation (O’Neill, 

2005), used by Sioshansi et al.
▪ Commitment status 𝑤𝑔𝑡 is fixed 

at its optimal value
▪ Set 𝒴𝑔 contains all private 

constraints, except 𝑤𝑔𝑡 ∈ {0,1}
• Output limits
• Min up/down time 
• Ramp rates
• Startup/shutdown logic

▪ Piecewise linear cost function 
𝐶𝑔(𝑝𝑔𝑡) and startup cost 𝐹𝑔
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Approximate Convex Hull (aCHP)
▪ Full CHP is impractical for 24 

hour poblem
• aCHP is exact approximation if 

ramp rates aren’t binding (Hua 
& Baldick, 2017)

▪ Cost function ҧ𝐶𝑔 𝑝𝑔𝑡 is 
made tighter for PWL cost 
curves

▪ All binaries 𝑤𝑔𝑡 are relaxed
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Approximate Restricted CHP (arCHP)
▪ Relaxes only the set of 

dispatched generators
• Variant: relax only hours that 

gen is dispatched, not tested

▪ All other aspects same as 
aCHP model
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Convex Hull Approximation
Cost Function Reformulation
Homogeneous of order 𝑘:

𝑓 𝛼𝑥 = 𝛼𝑘𝑓(𝑥)

Additional constraints:

ҧ𝐶𝑔 𝑥 =
ℓ=1

𝐿
𝑀𝐶𝑔ℓ𝑥𝑔ℓ


ℓ=1

𝐿

𝑥𝑔ℓ = 𝑝𝑔

0 ≤ 𝑥𝑔ℓ ≤ 𝑤𝑔 Δ𝑝𝑔
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How would different pricing models affect this inter-solution price variability?
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RTO-Scale Test Case (based on PJM)
▪ 24-hour day-ahead unit commitment
▪ Includes:

• Piecewise linear generator offers with 
startup and no-load costs

• Generator min/max output constraints
• Min uptime/downtime constraints
• Ramp rate constraints
• Fixed demand

▪ Excludes transmission and reserves
▪ 293,233 constraints
▪ 121,321 variables
▪ 24,264 binary variables
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Optimal Solution and Prices
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Price deviations: near-optimal vs. optimal
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Incentive Compatibility Measures
▪Make-whole payments (MWPs): amount to ensure bid cost recovery

• Standard practice, paid to generators in all ISOs

• Only paid to on-line generators

▪ Lost Opportunity Costs (LOCs): profitability difference of socially 
optimal and privately optimal schedules
• Important distinction – measurement of lost opportunity costs does not imply 

any particular side-payment policy

• Represents self scheduling incentives and “trust” in the market

• Creates need for incentive corrections (payments, deviation penalties, etc.)

• Possible whether generator is on-line or off-line
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Make-whole 
payments & lost 
opportunity costs
LOC >> MWP, regardless of 
pricing model

• MWP is a lower bound to 
(a component of) LOC
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Make-whole 
payments & lost 
opportunity costs
LOC >> MWP, regardless of 
pricing model

• MWP is a lower bound to 
(a component of) LOC

No relation for MWPs in aCHP
compared to LMP

High peak price in restricted 
model (arCHP) mostly 
eliminates MWPs 
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Lost opportunity costs: 
on-line & off-line units
Approximate CHP (aCHP) 
distributes more LOC to 
online units, less LOC to 
offline units

• Important: generator may 
be in the optimal solution 
but not others

LMP has lower online LOC 
than arCHP, which is odd

• Poor approximation?

18



Wealth transfers

ΔEnergyPayment𝑠 + ΔMWP𝑠 = ΔGenProfits +MIPGaps

Where:

ΔEnergyPayment = σ𝑡 price𝑡
𝑠 − price𝑡

∗ × 𝐷𝑡
ΔMWP = MWP𝑠 −MWP∗

ΔGenProfits = σ𝑔 𝜋𝑔
𝑠 − 𝜋𝑔

∗
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Wealth Transfers:
LMP
Compared to payments in the 
optimal solution

Based on LMPs and make-
whole payments

Replicates Johnson et al. and 
Sioshansi et al. results

24 solutions with transfers 
more than 5% of the system 
cost
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Wealth Transfers:
arCHP
Compared to payments in the 
optimal solution

Based on arCHPs and make-
whole payments

12 solutions with transfers 
more than 5% of system cost

Max transfer is 118% of the 
system cost (3rd solution)

21



Wealth Transfers:
aCHP
Compared to payments in the 
optimal solution

Based on aCHPs and make-
whole payments

Comparatively few transfers 
between alternative solutions
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Wealth Transfers:
aCHP (zoomed in)

Unlike other methods, wealth 
transfers are primarily 
between generators

Small size indicates level of 
indifference between 
alternative solutions
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Wealth transfers in the first 50 solutions, 
solution price to optimal solution price

Price: LMP arCHP aCHP

Average
(% system cost)

4.5% 5.1% 0.19%

Maximum
(% system cost)

18% 118% 0.37%

# > 1.0% 42 22 0

# > 2.5% 33 14 0

# > 5.0% 22 12 0

# > 7.5% 6 8 0
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Conclusions
▪ From Sioshansi et al. (2008): Unit commitment is a deterministic algorithm, 

so wealth transfers are likely to persist over days with similar conditions 
• i.e., transfers do not cancel out over time
• Possible gaming opportunities and rent seeking behavior

▪ Convex hull pricing removes this instability
• No discontinuities → simpler economic bidding incentives
• Indifference among participants who are only in some of the near-optimal solutions
• High LOC represents willingness to be a price taker (to self-schedule)
• Need to be addressed: Day ahead and real-time market convergence and incentives 

to follow dispatch (payments or penalties?)

▪ Paradoxically, results have little to do with lowering uplift payments 
• Paying LOC may be undesirable due to strategic bidding
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Perfect theory of forms
optimal solutions

-- or --

Empiricism, approximation, 
and large-scale problems
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Price Deviations:
LMP
𝑂𝑠 = max

𝑡
𝐿𝑀𝑃𝑡

𝑠 − 𝐿𝑀𝑃𝑡
∗

𝑈𝑠 = min
𝑡

𝐿𝑀𝑃𝑡
𝑠 − 𝐿𝑀𝑃𝑡

∗

Replicates Johnson et al. and 
Sioshansi et al. results
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Price Deviations:
arCHP
𝑂𝑠 = max

𝑡
𝑎𝑟𝐶𝐻𝑃𝑡

𝑠 − 𝑎𝑟𝐶𝐻𝑃𝑡
∗

𝑈𝑠 = min
𝑡

𝑎𝑟𝐶𝐻𝑃𝑡
𝑠 − 𝑎𝑟𝐶𝐻𝑃𝑡

∗

Similar to LMP, maybe smaller 
in most solutions

($378 deviation in 3rd solution)
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Price Deviations:
aCHP
𝑂𝑠 = max

𝑡
𝑎𝐶𝐻𝑃𝑡

𝑠 − 𝑎𝐶𝐻𝑃𝑡
∗

𝑈𝑠 = min
𝑡

𝑎𝐶𝐻𝑃𝑡
𝑠 − 𝑎𝐶𝐻𝑃𝑡

∗

All units are relaxed for aCHP, 
so no price deviations
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Wealth Transfers:
aCHP (in Dollars)

Unlike other methods, wealth 
transfers are primarily 
between generators

Small size indicates level of 
indifference between 
alternative solutions
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Johnson et al. (1997): Alternative near-optimal 
solutions using LaGrangian relaxation
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“However, the aggregate resource 
profits vary by up to 6% percent due 
to differences in the price vectors 
corresponding to the different 
solutions. Thus, while all the solutions 
are equally efficient they have 
different equity implications since the 
profit variability corresponds to 
welfare transfer between generators 
and consumers.”



Sioshansi et al. (2008): Alternative 
near-optimal solutions within the MIP gap
▪ Replicates price 

volatility in B&B tree

▪ Benefits of MIP:
• Lower cost solutions

• Pricing is more 
consistent than 
Lagrangian Relaxation

▪Make-whole payments 
mitigated generator 
profitability variances
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Sioshansi et al. (2008): Alternative 
near-optimal solutions within the MIP gap
▪ Replicates price 

volatility in B&B tree

▪ Benefits of MIP:
• Lower cost solutions

• Pricing is more 
consistent than 
Lagrangian Relaxation

▪Make-whole payments 
mitigated generator 
profitability variances
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• Large range of price 
deviations compared to 
optimal solution

• Nonmonotonic with 
decreasing MIP gap


