Convex Hull, IP and European Electricity Pricing in a European Power Exchanges setting with efficient computation of Convex Hull Prices

Mehdi Madani*, Carlos Ruiz**, Sauleh Siddiqui*, Mathieu Van Vyve***

*Johns Hopkins University, **Universidad Carlos III de Madrid, ***Université catholique de Louvain

- Insights on European day-ahead markets and bidding products
- Convex Hull Pricing: efficient computation with EU-like bids with startup costs, ramp constraints and min. output levels
- (Numerical) comparison of key pricing rules: CHP, IP and EU for two-sided day-ahead electricity auctions with EU-like non-convex demand/offer bids (source code in Julia online)

- 1. European day-ahead markets and bidding products
- 2. Convex Hull Pricing: efficient computation with EU-like bids
- 3. IP Pricing and "EU Pricing"
- 4. Numerical experiments

European day-ahead markets and bidding products

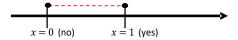
Context

- Guideline on Capacity Allocation & Congestion Management (Commission Regulation (EU) 2015/1222)
- Nominated Market Operators: "Power Exchanges", entities like ISOs, privately owned:
 e.g. EPEX Spot (France, Germany, Belgium, etc.)
- A single integrated market: bidding zones = countries
- A single market clearing algorithm, EUPHEMIA: handles the bidding products/market rules of the different Power Exchanges
- Two-sided auctions with non-convex demand and offer bids

Non-convexities in day-ahead markets

Main non-convexities

Binary variables introduce non-convexities Classical economic/strong duality results do not hold anymore.



1. Technical constraints

2. Costs structure

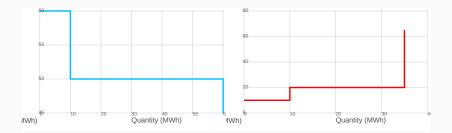
- Minimum power output levels
- Minimum up and down times

• Start up costs / shut down costs

Main bidding products in Europe and market rules

Classical bid curves

- Users: all Power Exchanges
- "marginal costs/utility" without technical conditions
- should be 'at equilibrium': e.g. fractionally accepted bids/steps set the price



Main bidding products in Europe and market rules

Block orders

- Users: EPEX and Nord Pool (France, Germany, Belgium, Norway, The Netherlands, etc.)
- Indivisibilities: minimum power output levels over several hours
 e.g. "fill-or-kill" for regular block bids: yes/no for all quantities
 over time horizon
- Can be "paradoxically rejected" (profitable yet rejected) but cannot cause losses (if min. acceptance ratio: set the price if marginal)
- Can be "linked" or be mutually exclusive

Main bidding products in Europe and market rules

- "Complex Orders with a Minimum Income Condition" (MIC)
 - Users: Spanish and Portuguese day-ahead markets (OMIE)
 - Input data for MICs
 - marginal cost curves for each hour
 - start up cost
 - $\cdot\,$ ad hoc variable cost (on top of the marginal cost curves...)
 - ramp constraints, called "load gradients"
 - (Scheduled stop)

Minimum income condition: basic formulation

 $(quantities)(market prices) \ge start up costs + (quantities)(variable cost)$

$$(u_c = 1) \implies \sum_t \pi_t (\sum_i -Q^{c,t,i} \mathbf{X}_{c,t,i}) \ge F_c + V_c (\sum_{t,i} -Q^{c,t,i} \mathbf{X}_{c,t,i})$$

Exact linearization without any aux. var. in Madani and Van Vyve, A MIP framework for non-convex uniform price day-ahead electricity auctions, EURO Journal on Computational Optimization, 2017

General "EU-like" bidding products and welfare maximization

$$\max_{(u,x)} \sum_{c} (\sum_{t,i} P^{c,t,i} Q_{c,t,i} X_{c,t,i}) - F_c u_c$$

$$\sum_{c} \sum_{i} Q_{c,t,i} X_{c,t,i} = 0 \qquad \forall t \ [\pi_t]$$

$$r_{c,t,i}u_{c} \le x_{c,t,i} \le u_{c} \qquad \forall c, t, i$$

$$\sum_{i} (-Q^{c,t+1,i}) X_{c,t+1,i} - \sum_{i} (-Q^{c,t,i}) X_{c,t,i} \le R U_c \ u_c \qquad \forall c,t$$

$$\sum_{i} (-Q^{c,t,i}) x_{c,t,i} - \sum_{i} (-Q^{c,t+1,i}) x_{c,t+1,i} \le RD_c \ u_c \qquad \forall c,t$$

 $u_c \in \{0,1\}$

Q < 0 for sell orders, Q > 0 for buy orders, $r_{ic} \in [0, 1]$ min. acceptance ratio

Primal welfare maximization program

$$\max_{(u,x)} \sum_{c} B_{c}(u_{c}, x_{c})$$
(1)
s.t.
$$\sum_{c} \sum_{i} Q_{c,t,i} x_{c,t,i} = 0 \qquad \forall t \in T \ [\pi_{t}]$$
(2)
$$(u_{c}, x_{c}) \in X_{c} \qquad \forall c \in C$$
(3)

- $B_c(u_c, x_c) < 0$ for sell orders, $B_c(u_c, x_c) > 0$ for buy orders
- Q < 0 for sell orders, Q > 0 for buy orders

Convex Hull Pricing: efficient computation with EU-like bids

Uplifts

Given an optimal solution (u^*, x^*) and market prices π_t , the uplift of participant $c \in C$ is defined as:

 $uplift_{(u_c^*, x_c^*)}(\pi) :=$

$$\left(\max_{(u_c,x_c)\in X_c}\left[B_c(u_c,x_c)-\sum_t \pi_t \sum_i Q_{c,t,i} x_{c,t,i}\right]\right) - \left(B_c(u_c^*,x_c^*)-\sum_t \pi_t \sum_i Q_{c,t,i} x_{c,t,i}^*\right)$$

at the given market prices π :

maximum profit participant c could get with its own decisions

actual profit/losses with the Market Operator decisions

Theorem (Gribik et al. (2007))

Let π^* solve the Lagrangian dual where the balance constraint(s) have been dualized:

$$\min_{\pi} \left[\max_{(u_c, x_c) \in X_c, c \in C} \left[\sum_{c} B_c(u_c, x_c) - \sum_{t} \pi_t \sum_{i} Q_{c,t,i} x_{c,t,i} \right] \right]$$
(4)

Then, π^* solves:

$$\min_{\pi} \sum_{c} uplift_{(u_{c}^{*}, x_{c}^{*})}(\pi)$$
(5)

Van Vyve (2011), Schiro et al. (2016) , Hua and Bowen (2016) Under mild conditions, convex hull prices can be computed via:

$$\max \sum_{c} B_{c}(u_{c}, x_{c}) \tag{6}$$

$$\sum_{c} \sum_{i} Q_{c,t,i} X_{c,t,i} = 0 \qquad \forall t \ [\pi_t] \qquad (7)$$
$$(u_c, x_c) \in Conv(X_c) \qquad \forall c \in C \qquad (8)$$

With min. power output and min up/down times:

- D. Rajan and S. Takriti (2005) (3-bin unit commitment model)
 - Tight formulation, i.e. describing the Convex Hull
 - \cdot Used in Hua and Baldick (2016) for their "primal approach"

With min. power output, ramp constraints and min up/down times:

- Damcı-Kurt, Küçükyavuz, Rajan and Atamtürk (2015):
 - · Convex Hull for two periods ramp up (resp. ramp down) polytopes
- Guan, Pan and Zhou (2018):
 - \cdot Convex hull for three periods
- Knueven, Ostrowski and Wang (2017):
 - Tight compact extended formulation for the multiperiod case
 - Proved via a Thm. on constrained Minkowski sums of polyhedra
 - Tractable to compute CH Prices for medium scale instances (big LP to solve), memory limitation for very large instances
- Gentile and Frangioni, results related to Knueven et al. (2017)

Easy Convex Hull Pricing with EU-like bids

With min. power output, ramp constraints and startup costs given by $F_c u_c \dots$ but without min up/down times

 X_C :

$$r_{c,t,i}u_c \le x_{c,t,i} \le u_c \qquad \forall c,t,i$$

$$\sum_{i} (-Q^{c,t+1,i}) X_{c,t+1,i} - \sum_{i} (-Q^{c,t,i}) X_{c,t,i} \le R U_c \ u_c \qquad \forall c,t$$

$$\sum_{i} (-Q^{c,t,i}) X_{c,t,i} - \sum_{i} (-Q^{c,t+1,i}) X_{c,t+1,i} \le RD_c u_c \qquad \forall c, t$$
$$u_c \in \{0,1\}$$

- X_c of the form $\{(0,0)\} \cup \{(1,x), with \ x \mid Ax \le b\}$
- $conv(X_c) = \{(u, x) \in \mathbb{R} \times \mathbb{R}^n | 0 \le u \le 1, Ax \le bu\}$
- conv(X_c): continuous relaxation of X_c , $u_c \in \{0, 1\}$, $u \in [0, 1]$

Easy Convex Hull Pricing with EU-like bids

$$\max_{(u,x)} \sum_{c} (\sum_{t,i} P^{c,t,i} Q_{c,t,i} X_{c,t,i}) - F_c u_c$$

$$\sum_{c} \sum_{i} Q_{c,t,i} X_{c,t,i} = 0 \qquad \forall t [\pi_t] CH Prices$$

$$r_{c,t,i}u_{c} \leq x_{c,t,i} \leq u_{c} \qquad \forall c,t,i$$

$$\sum_{i} (-Q^{c,t+1,i}) X_{c,t+1,i} - \sum_{i} (-Q^{c,t,i}) X_{c,t,i} \le R U_c \ u_c \qquad \forall c,t$$

$$\sum_{i} (-Q^{c,t,i}) X_{c,t,i} - \sum_{i} (-Q^{c,t+1,i}) X_{c,t+1,i} \le RD_c \ u_c \qquad \forall c,t$$

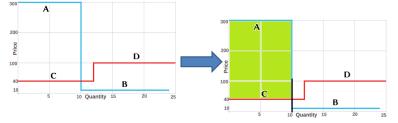
 $\underline{u_c \in \{0,1\}} \quad u_c \in [0,1]$

Q < 0 for sell orders, Q > 0 for buy orders, $r_{ic} \in [0, 1]$ min. acceptance ratio

Easy Convex Hull Pricing with EU-like bids

Convex Hull Pricing: basic example

Welfare Maximizing Solution: Fully accept A + 10MW from C



« Welfare = _ - 200 € »

Bids	Quantity (MW)	Limit Price (€/MW)	Start up costs
A (buy)	10	300	-
B (buy)	14	10	-
C (sell)	12	40	<u>200</u> €
D (sell)	13	100	-

Convex Hull Pricing
market price = 56.6 € /MW Actual losses • 10(56.6 40) - 200 = - 33.33€ Opportunity costs • C: (56.6 40)x(12-10) = 33.33€ Deviation from equilibrium:
■ 33.33 € < 200 € (IP pricing)

IP Pricing and "EU Pricing"

IP Pricing - R. P. O'Neill et al. (EJOR, 2005)

$$\max_{(u,x)} \sum_{c} (\sum_{t,i} P^{c,t,i} Q_{c,t,i} X_{c,t,i}) - F_c U_c$$

$$\sum_{c} \sum_{i} Q_{c,t,i} X_{c,t,i} = 0 \qquad \forall t \ [\pi_t]$$

$$r_{c,t,i}\boldsymbol{u}_{c} \leq \boldsymbol{x}_{c,t,i} \leq \boldsymbol{u}_{c} \qquad \qquad \forall c,t,i \ [\mathbf{S}_{c,t,i}^{max}]$$

$$\sum_{i} (-Q^{c,t+1,i}) X_{c,t+1,i} - \sum_{i} (-Q^{c,t,i}) X_{c,t,i} \le R U_c \ u_c \qquad \forall c,t$$

$$\sum_{i} (-Q^{c,t,i}) X_{c,t,i} - \sum_{i} (-Q^{c,t+1,i}) X_{c,t+1,i} \le RD_c \ u_c \qquad \forall c,t$$

$$u_{c_a} = 1 \qquad \forall c_a \in \{c | u_c^* = 1\} := C_a \subseteq C \qquad [\delta_{c_a}]$$

$$u_{c_r} = 0 \qquad \forall c_r \in \{c | u_c^* = 0\} := C_r \subseteq C \qquad [\delta_{c_r}]$$

 C_a, C_r : partition given by the optimal u_c^* !

$$\begin{aligned} u_{c_a} &= 1 & \forall c_a \in \{c | u_c^* = 1\} := C_a \subseteq C & [\delta_{c_a}] \\ u_{c_r} &= 0 & \forall c_r \in \{c | u_c^* = 0\} := C_r \subseteq C & [\delta_{c_r}] \end{aligned}$$

 π , δ_c equilibrium prices for an appropriately defined settlement rule with payments depending on π , δ_c (R. P. O'Neill et al., EJOR, 2005)

Actually, for any commitment decisions $\overline{u_c}$ determining $C_a := \{c | \overline{u_c} = 1\}$ and $C_r := \{c | \overline{u_c} = 0\}$:

•
$$\delta_{c_a} = \text{profit/loss of } c_a = \sum_{t,i} -Q^{c_a,t,i} (\pi_t - P^{c_a,t,i}) X_{c_a,t,i} - F_{c_a}$$

- $\cdot \delta_{c_r}$ = upper bound on the opportunity costs (missed profits)
- $x_{c,t,i}$ optimal decisions, for fixed $\overline{u_c}$ and market prices π_t

Revisiting Minimum Profit Conditions in Uniform Price Day-Ahead Electricity Auctions (Madani and Van Vyve, EJOR, 2018):

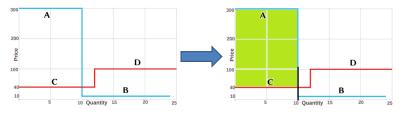
- Minimum Profit/Maximum Payment conditions revisited: only consider commitment decisions $\overline{u_c}$ determining $C_a := \{c | \overline{u_c} = 1\}$ and $C_r := \{c | \overline{u_c} = 0\}$ such that: $\delta_{c_a} \ge 0$: no losses for selected bids/committed plants
- European block orders clearing conditions turn out to be just a special case of this
- the way to go to reformulate orders with a "Minimum Income Condition" used in Spain and Portugal: includes marginal costs and startup costs recovery conditions

Bids more general than block orders, and variant of MIC orders: hence, called "EU-like" bids and market rules.

IP Pricing and EU-like rules: basic example

IP Pricing: a basic example

Welfare Maximizing Solution: Fully accept A + 10MW from C



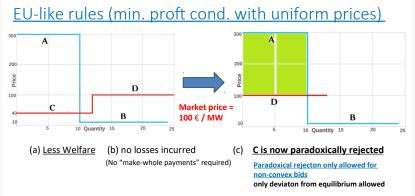
« Welfare = ____ - 200 € »

Bids	Quantity (MW)	Limit Price (€/MW)	Start up costs
A (buy)	10	300	-
B (buy)	14	10	-
C (sell)	12	40	<u>200</u> €
D (sell)	13	100	-

IP	Pricing	

- market price = 40 € /MW
- δ_c = -200: C is compensated for its losses: 200 €, the start up costs

IP Pricing and EU-like rules: basic example



Bids	Quantty (MW)	Limit Price (€/MW)	Start up costs
A (buy)	10	300	-
B (buy)	14	10	-
C (sell)	12	40	<u>200</u> €
D (sell)	13	100	-

IP Pricing and EU-like market rules

Revisiting Minimum Profit Conditions in Uniform Price Day-Ahead Electricity Auctions (Madani and Van Vyve, EJOR, 2018):

"primal-dual" MILP formulation without any auxiliary variables or compl. constraints for EU-like rules

Benders decomposition derived from the MILP formulation

• globally valid "no-good" cuts (also by Martin, Muller and Pokutta in a related context):

$$\sum_{c \mid u_c^* = 1} (1 - u_c) + \sum_{c \mid u_c^* = 0} u_c \ge 1$$

• *locally* valid strengthened Benders cuts:

$$\sum_{c \mid u_c^* = 1} (1 - u_c) \ge 1$$

Numerical experiments

Table 1: Welfares and uplifts (euros). The "Welfare Loss (EU rules)" columnindicates how much welfare is lost with European Pricing.

Inst	# Non-Convex bids	#Steps	Welfare	Welfare Loss	upliftsCHP	upliftsIP
			(IP & CHP)	(EU rules)		(make-whole)
1	90	14309	115426705.6	11084.8536	288.7258	7393.944
2	91	13986	107705738.5	5003.636	439.193	5000.8
3	91	14329	113999405.5	2141.15356	1030.314	6648.373
4	92	14594	109951139.7	9466.60112	603.5169	5827.93
5	89	14370	107172393.2	7754.3366	72.63568	867.284
6	87	14389	123823967.6	3377.139199	239.3088	1835.88
7	89	14783	119386085.4	6964.017	329.5143	3116.86
8	86	14414	105372099.8	2187.674081	72.25676	951.5828
9	88	14860	96023475.04	2046.41408	778.3553	5275.138
10	86	14677	98212635.81	2597.8314	401.637	2313.78

Table 2: Number of paradoxically accepted (resp. rejected) non-convex bidsfor each pricing rule

Inst	# Non-Convex bids	pabEU	prbEU	pabIP	prbIP	pabCHP	prbCHP
1	90	0	2	1	0	1	1
2	91	0	1	1	0	0	0
3	91	0	5	1	0	0	1
4	92	0	2	1	0	1	5
5	89	0	4	1	0	0	0
6	87	0	1	2	0	1	1
7	89	0	2	1	0	1	1
8	86	0	2	1	0	0	2
9	88	0	2	2	0	0	3
10	86	0	2	1	0	0	1

Total run times for each pricing rules - easy instances

Table 3: Run times for each pricing rule (in seconds)

Inst	# Non-convex bids	# Steps	runEU	runIP	runCHP
1	90	14309	4.047098	2.202199	2.073478
2	91	13986	4.648906	2.081456	2.065098
3	91	14329	4.231441	2.294439	2.102532
4	92	14594	4.82378	2.050598	2.345987
5	89	14370	4.410432	1.860187	1.819655
6	87	14389	3.78953	1.907919	2.25707
7	89	14783	4.631189	2.104128	2.149526
8	86	14414	3.8165	1.842994	2.142367
9	88	14860	4.603193	1.943571	2.043593
10	86	14677	3.73881	2.0862	1.897801

Total run times for each pricing rules - hard instances

Table 4: Run times for each pricing rule (in seconds)

Inst	# Non-convex bids	# Steps	runEU	runIP	runCHP
1	456	5274	\geq 300	21.96525	21.39609
2	660	7161	\geq 300	51.89202	59.04887
3	533	5373	\geq 300	24.74296	24.71822
4	487	4949	\geq 300	19.23026	18.69612
5	618	5905	74.10239	33.18137	35.50521
6	535	5148	41.32513	22.05355	20.78923
7	546	5394	29.91423	22.00446	21.20238
8	540	5395	31.25016	22.02144	22.29015
9	506	5473	30.5554	21.64758	21.26571
10	479	6537	76.04344	27.91634	26.5238

Conclusions

- EU-like rules:
 - avoids the use of any side payments
 - $\cdot\,$ much more difficult to compute for large hard instances
 - $\cdot\,$ rather small welfare losses compared to the real welfare max. sol.
- IP Pricing:
 - $\cdot\,$ more welfare and easier to compute
 - Less "paradoxically rejected bids" and "paradoxically accepted bids" receive make-whole payments
- Convex Hull Pricing:
 - more welfare and easier to compute (for EU-like bids)
 - Less "paradoxically rejected bids"
 - \cdot smaller (smallest...) deviations from a market equilibrium

N.B. The three pricing rules can give surprising outcomes.

Thank you!