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Power Grid Problems

source: Alexandra von Meier
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Modeling Goal
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General Problem Formulation

minimize C(x) + O(x)
subject to x ∈ X

� Where x ∈ X represents the build decisions made subject to
constraints

� C(x) represents annual payment on assets x built
� O(x) represents the annual cost of operations given assets x

are built
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Established Models

� IPM: Environmental Protection Agency
� NEMS: U.S. Energy Information Administration
� ReEDS: National Renewable Energy Laboratory
� US-REGEN: Electrical Power Research Institute
� SWITCH: open source model original developed by Matthias

Fripp 1

� All are either linear or mixed integer linear programs in their
base configuration 2

1https://github.com/switch-model/switch.git
2Variable Renewable Energy in Long-Term Planning Models: A Multi-Model

Perspective (https://www.nrel.gov/docs/fy18osti/70528.pdf)
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Build Decisions Informed by Operations

source: Alexandra von Meier
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Traditional Approaches for Handling Operations

� Choose a representative set of time points from various points
in the year, and weight them according to their frequency

� Choose a small set of representative days using clustering
methods

� Observation: common methods use a set of operational
scenarios to inform build decisions

� Question: are the existing methods sufficient for making
expansion decisions where there is high penetration or
renewable energy?
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Variable Generation

source: NREL Wind Tool Kit
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source: NREL Wind Tool Kit
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Variable Generation on a Simple Network

One can think through the problematic cases.
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Variable Generation on a Complex Network

One can no longer think through the problematic cases, due to
weakness that may exist in the network.
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Big Picture Goal

A scalable modeling framework that gives us the flexibility pursue a more
data driven approach that takes into account all of the operational edge
cases introduced by variable generation, especially when we don’t know
what they are.
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A Two-Stage View

� First Stage Decisions: What is going to be built to meet
electrical power demand

� Second Stage Decisions: Grid Operations
» Which generators to turn on
» What levels to dispatch generators that are one
» Which generators should hold reserves
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Model Structure

We want a O(x) to be a set of operational scenarios which
capture the variability in renewable energy sources.
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Resulting Sparsity Structure

min
x,yi i=1,...,N

cTx +
N∑

i=1

dT
ξi

yi

s. t. Ax = b
Tξ1x + Wξ1y1 = bξ1

Tξ2x + Wξ2y2 = bξ2

Tξ3x +
. . . =

...
TξN x + WξN yN = bξN

x ≥ 0, y1 ≥ 0, y2 ≥ 0, . . . ,yN ≥ 0 .

Here x and yi can have continuous and integer components
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Progressive Hedging

� Horizontal technique for solving multi-stage scenario based
stochastic programs

� Solves individual subproblems with penalty terms to force
consensus over time amongst the first stage decision variables

� Converges linearly when subproblems are convex3

� Has been demonstrated to be an effective heuristic for solving
stochastic mixed integer programs4

3Rockafellar, and Wets, 1991
4Løkketangen, and Woodruff, 1996
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Model Development

� Pyomo contains a framework PySP for modeling stochastic
programs5

� PySP has an implementation of progressive hedging
� PySP’s progressive hedging algorithm can be executed in serial

or in parallel using Pyro
� A capacity expansion model was constructed using Pyomo in

the PySP framework

5Hart, William E., et al, 2017
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Core Model Features

� Objective: minimize annual costs
� First stage decisions: generators built
� First stage constraints: number of each generator type, level of

generation capacity on the system
� Second stage decisions: generator hourly commitment,

dispatch levels, holding reserves
� Second stage constraints: pipe and bubble network, generator

commitment, min/max generation, minimum reserve levels,
generator ramping
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Test Case

RTS-GMLC 6 is a modernized version of the IEEE Reliability Test
System-1996. It was developed to satisfy the need for a
standardized data base to test and compare results from different
power system reliability evaluation methodologies.

� Buses 73
� Lines 120
� Generators 158
� Three weakly connected regions

6https://github.com/GridMod/RTS-GMLC
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RTS-GMLC
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Green Field Formulation
We considered a modified version of the RTS-GMLC with the
following components
� Buses 3
� Lines 3
� A pool of 279 generators divided spatially amongst the 3 buses
Our model was run to determine which of the 279 generators
should be built
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Performance Test Runs

� Considered grid operations for every 3rd day of the year (122
day long scenarios)

� Each day long scenario was 24 temporally linked hourly
operations decisions

� Solver used was Xpress
� Sub-problems for each scenario were solved to a 1% relative

MIP gap
� Heuristics regarding cycle detection and variable fixing for

acceleration convergence
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Timing Results

� Binary variables= 623934, continuous variables=2667408, total
variables=3291342

� Iterations=100
� Relative MIP gap range=3.25%− 4.25%
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Speed Up
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Sub-problems in the 64 Core Case
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Sub-Problem Barrier
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Capacity Build Out
Note: 365 days ran 100 iterations and achieved 2.1-3.1% Relative
MIP gap
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Summary

� We have developed a scalable capacity expansion model with
respect to the number of operational scenarios in can consider

� We have done this using the stochastic programming
framework PySP within Pyomo and by leveraging Pyomo’s
implementation of the PH algorithm

Future Work

� Refine underlying operational model, Include full RTS-GMLC
network, Test on larger systems

� Close relative mip gap
� Run model with various numbers of scenario and test the

resulting build decisions in a high fidelity production cost model



30

Two Stage Stochastic Structure

min
x∈Rn

cTx + Eξ [L (x , ξ)]

s. t. Ax = b
x ≥ 0

where the recourse function is defined as the solution to,

L (x, ξ) = min
y∈Rm

dT
ξ y

s. t. Tξx + Wξy = bξ (1)
y ≥ 0 .
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Sample Average Two Stage Stochastic Sparsity
Structure

min
x,yi i=1,...,N

cTx +
1
N

N∑
i=1

dT
ξi

yi

s. t. Ax = b
Tξ1x + Wξ1y1 = bξ1

Tξ2x + Wξ2y2 = bξ2

Tξ3x +
. . . =

...
TξN x + WξN yN = bξN

x ≥ 0, y1 ≥ 0, y2 ≥ 0, . . . ,yN ≥ 0 .
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Weighted Sample Average Sparsity Structure

min
x,yi i=1,...,N

cTx +
1
N

N∑
i=1

N
(

dT
ξi

yi

)
s. t. Ax = b

Tξ1x + Wξ1y1 = bξ1

Tξ2x + Wξ2y2 = bξ2

Tξ3x +
. . . =

...
TξN x + WξN yN = bξN

x ≥ 0, y1 ≥ 0, y2 ≥ 0, . . . ,yN ≥ 0 .
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The Progressive Hedging Algorithm

1. k ←− 0, w0
i ←− 0, for i = 1, . . . ,N where w0

i ∈ Rn

2. Solve sub-problems corresponding to ξ1, . . . , ξN

min
xi∈Rn,yi∈Rm

cTxi + dT
ξi

yi

s. t. Axi = b
Tξi xi + Wξi yi = bξi

xi ≥ 0,yi ≥ 0 .

xk
i ←− xi for i = 1, . . . ,N

3. k ←− k + 1

4. x̄k−1 ←−
N∑

i=1

1
N xk−1

i

5. wk
i ←− wk−1

i + ρ
(

xk−1
i − x̄k−1

)
for i = 1, . . . ,N
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The Progressive Hedging Algorithm Cont.

6. Solve penalized sub-problems corresponding to ξ1, . . . , ξN

min
xi∈Rn,yi∈Rm

cTxi + dT
ξi

yi + wkT
i xi +

ρ

2
∥∥xi − x̄k−1

∥∥2

s. t. Axi = b
Tξi xi + Wξi yi = bξi

xi ≥ 0,yi ≥ 0 .

xk
i ←− xi for i = 1, . . . ,N

7. Check to see if xk
i are identical for i = 1, . . . ,N, if not return to

step 3
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Model

minimize
∑

g∈Gnew

cgpmax
g ng +

∑
r∈Rnew

cr pmax
r nr +∑

s∈S

λs
∑
t∈T

∑
g∈G∪Gnew

(
cdis

g ps
g,t + csu

g SUs
g,t + csd

g SDs
g,t

)
+∑

s∈S

λs
∑
t∈T

∑
r∈R∪Rnew

cdis
r ps

r ,t∑
s∈S

λs
∑
t∈T

∑
q∈D

(
coloadOLs

q,t + c lossLs
q,t

)
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subject to (1 + Rcap)Ecap ≤
∑
g∈G

pmax
g nold

g Idis
g +∑

g∈Gnew

pmax
g ng Idis

g +
∑
r∈R

pmax
r nold

r Idis
r +

∑
r∈Rnew

pmax
r nr Idis

r

ntherm,min
g ≤ ng ≤ ntherm,max

g ∀g ∈ Gnew

nrenew ,min
r ≤ nr ≤ nrenew ,max

r ∀r ∈ Rnew
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0 ≤ Ns
g,t ≤ nold

g ∀s, t ,g
(g ∈ G \Gnew )

0 ≤ Ns
g,t ≤ ng ∀s, t ,g

(g ∈ Gnew \G)

0 ≤ Ns
g,t ≤ ng + nold

g ∀s, t ,g
(g ∈ G ∩Gnew )
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pmin
g Ns

g,t ≤ ps
g,t ∀s, t ,g

ps
g,t + ys

g,t ≤ pmax
g Ns

g,t ∀s, t ,g
Rmin

g Ns
g,t(Ig) ≤ ys

g,t ≤
(
pmax

g − pmin
g
)

Ns
g,t(Ig) ∀s, t ,g

ys
g,t ≤ Rup

g ∀s, t ,g

Ns
g,t−1 − Ns

g,t + SUs
g,t − SDs

g,t = 0 ∀s, t ,g

(some initial condition on Ns
g,0 )
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Rsys ≤
∑

g∈G∪Gnew

ys
g,t ∀s, t

0 ≤ ps
r ,t ≤ γs

r ,tp
max
r nold

r ∀s, t , r
(r ∈ R \ Rnew )

0 ≤ ps
r ,t ≤ γs

r ,tp
max
r nr ∀s, t , r

(r ∈ Rnew \ R)

0 ≤ ps
r ,t ≤ γs

r ,tp
max
r

(
nr + nold

r
)
∀s, t , r

(r ∈ R ∩ Rnew )
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Rdown
g Ns

g,t ≤ ps
g,t − ps

g,t−1 ≤ Rup
g Ns

g,t ∀s, t ,g

(some initial condition on ps
g,0)

−f max
l ≤ f s

l,t ≤ f max
l ∀s, t , l∑

g∈G[q]∪Gnew [q]

ps
g,t +

∑
r∈R[q]∪Rnew [q]

ps
r ,t +

∑
l∈K

Aq,l f s
l,t =

= ds
q,t + OLs

q,t − Ls
q,t ∀s, t ,q

Ns
g,t ,SUs

g,t ,SDs
g,t ∈ N ∀s, t ,g


