

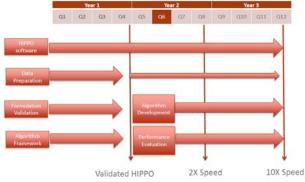
Proudly Operated by Battelle Since 1965

HIPPO – HPC Solver for Security Constrained Unit Commitment Problem

FENG PAN (PRESENTER)

PNNL, MISO, GE, GUROBI FERC 2018

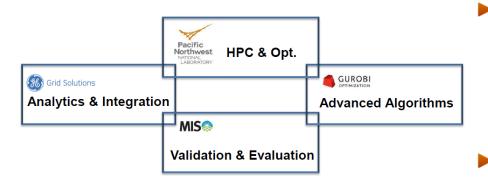
HIPPO Overview



- HIPPO a three-year project
 - Funded by ARPA-E.
 - FY16 FY19.
 - Goal is to speed up solving security constrained unit commitment (SCUC) by a factor of 10.

HIPPO Optimizer

- Python package for solving SCUC.
- Can be run on workstations and HPC.
- Gurobi as the basic MIP solver.
- HIPPO Status
 - SCUC model is validated with MISO production tool.
 - Currently about 2-3 time speed-up (upper bound methods)



- PNNL MIP, algorithm development, HPC, implementation and testing
- GUROBI MIP, Gurobi solver and parallel/distributed computing
- GE market simulator, benchmark, domain knowledge, MIP and OPF
- MISO domain knowledge, algorithm development, data, model validation, market operations, and MIP.
- UF Optimization, cutting planes, and integer programming
- LNNL parallel MIP

PNNL

- Feng Pan (PI, Optimization)
- Steve Elbert (Co-PI, HPC, Optimization)
- Jesse Holzer (Optimization)
- Arun Veeramany (Applied Math, Machine Learning)
- GUROBI
 - Ed Rothberg (Optimization)
 - Daniel Espinoza (Optimization)
- GE
 - Jie Wan (Optimization, Power System Application)
 - Xiaofeng Yu (Market Application)
 - Sandeep Lakshmichandjain (Software)
- MISO
 - Yonghong Chen (Optimization, analytics, Electricity Market)
 - Yaming Ma (Electricity Market)
- UF FY18
 - Yongpie Guan (Optimization, SCUC)
 - Yanna Yu (Optimization)
- LNNL FY18
 - Deepak Rajan (Optimization, HPで)^{19, 2018} | 3

MISO SCUC

- Motivation for HIPPO forwarding planning, SCUC is getting larger and more complex
 - More resources gas, renewable, …
 - More complicated CC, storage, …
 - More market products virtuals, dispatchable demands
 - Uncertainties, subhourly, decentralization, AC vs DC...
- Speed for solving deterministic SCUC is critical for improving future market operation.
- MISO SCUC
 - Large size (# of resources, security constraints) among ISOs/RTOs.
 - Time variant generation bounds, ramp rates.
 - Commitment for reserve.
 - Many virtuals and security constraints!!!

Current	Future	
r plants over high voltage em e transmission flow matrix tual transactions that may	System Portfolio changes Potentially more smaller size distributed resources Nore renewable and gas resources	
ensity urce model pricing challenges	More complicated resources (Combined Cycle, Storage, VPP) Non-convexity + density + uncertainty Low marginal cost Scheduling and pricing challenges	
h DC-OPF JC/SCED C is the most r challenging application vanced modeling and P solver	Applications Centralized, or hierarchical, or distributed optimization? DC-OPF sufficient? Existing tools scalable? Multi-scenaria / stochastic?	

Chen, FERC 2018

Centralized po

Proudly Operated by Baffelle Since 1965

Runtiem vs OOS

To reduce runtime

- Solve smaller subproblems then recover solutions.
- Make local improvement of a solution.
- Improve structure of the original problem (convex hull).
- Find oracle to tell us what the solutions are.
- Add computing resource.

Continuously improve upper bounds and lower bounds independently and in parallel

Proudly Operated by Baffelle Since 1965

Improving solving SCUC as MIP (exact method)

- Make MIP closer to LP cutting planes, tighter formulation
- Solve reduced problems and gradually restore to the original delay constraint and delay variable generation. E.g., Benders
- Branch and bound branching rules, parallel implementation, bounds...

Improving solving SCUC via heuristics

- Separate the original problem into small subproblems and pretend SCUC as a convex problem. E.g. ADMM.
- Reduce size of problem by fixing/removing variables and constraints.
- Focus on a part of SCUC. E.g., polishing

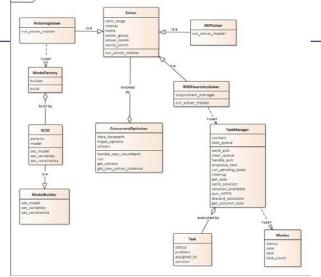
Improving solving SCUC via oracles

Use domain specific knowledge to make decisions.

Proudly Operated by Baffelle Since 1965

HIPPO concurrent optimizer

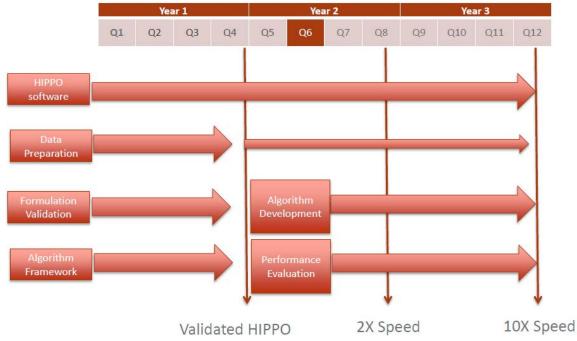
- The mastermind of all algorithms.
- The concurrent optimizer is run as a single solver which calls many instance of individual algorithms
- Concurrent optimizer supports the communication among individual algorithms with sharing bounds and solutions and monitor their behaviors.



HIPPO – Year 1 and Year 2

Model validation.

- Discuss validation results
- Implementation of Individual algorithms and performance testing
 - Show preliminary performance testing on formulation and algorith



Validation

HIPPO formulation is validated with MISO production model!!!

- Validate HIPPO SCUC formulation with GE SCUC solver.
- Criteria feasibility, optimality.
- Cross check solutions to validate
 - Solution from one formulation is feasible in the other formulation.
 - Objective values of different formulations agree for a solution.
- There are a good amount of multiple solutions within 0.1% gap.

Case	# Gen
MSS_92201201709093649_0X	31
MSS_92301201709092353_0X	25
MSS_91501201709092501_0X	23
MSS_110101201611105417_0X	22
MSS_92501201709093020_0X	17

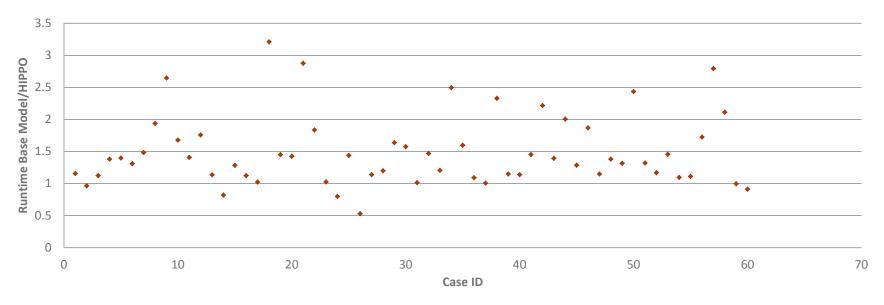
Number of generators different in two models

Difference in schedules

MSS_120501201712102 650_0X	Hydro_1	00000000000000000000000000000000000000
MSS_110101201611105 417_0X	Hydro_1	00000000000000a1h01000000000000000111
MSS_914012017090926 80_0X	Hydro_1	00000000000111111h10000000000111111
MSS_718012017070922 32_0X	CC_1	0000000a11111111111111h00000000aaaa
MSS_822012017080912 45_1X	CC_1	0000000000aaaaa1111111h0000000000000

Performance Testing on Formulations – 60 More Mixed Cases

Proudly Operated by Battelle Since 1965



Base Model/HIPPO Formulation

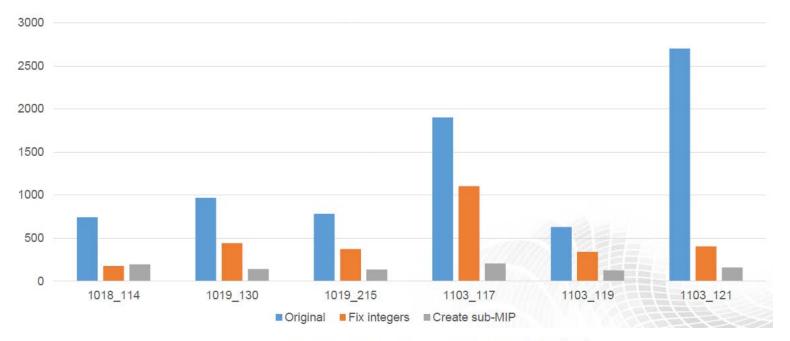
Test the performance of HIPPO formulation on 60 cases against base model.

Overall, we see time saving in HIPPO formulations.

Heuristic – Variable Fixing with Reduced Cost

Proudly Operated by Battelle Since 1965

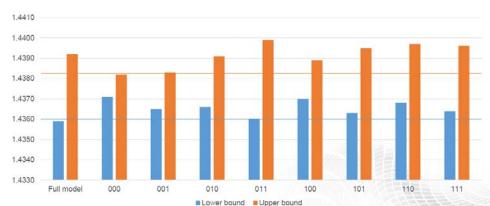
- Solve LPR, fix binary variables based on reduced costs
- ▶ Time to find a 0.1% gap solution
- Find high quality incumbent solutions

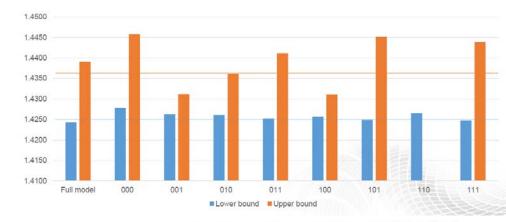


Copyright 2018, Gurobi Optimization, Inc.

Heuristic – Variable Fixing with Reduced Cost

- Solve LPR, divide binary variables to blocks (3 blocks)
- fix binary variables based on reduced costs
- Create disjuction in each block
- Find high quality incumbent solutions and better lower bounds





Copyright 2018, Gurobi Optimization, Inc.

Pacific Northwest

Proudly Oberated by Baffelle Since 1965

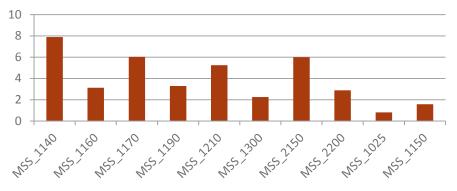
Heuristic – Variable Fixing with Rounding

- Solve LPR, fixing binary variables by rounding.
- MIP gaps are based on true lower bounds
- Find high quality incumbent solutions
 - Accuracy of rounding depends on generator characteristics.
 - Formulation.
- Runtime includes solving LP and solving reduced MIP

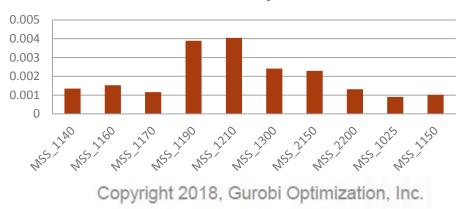
Pacific Northwest

NATIONAL LABORATORY

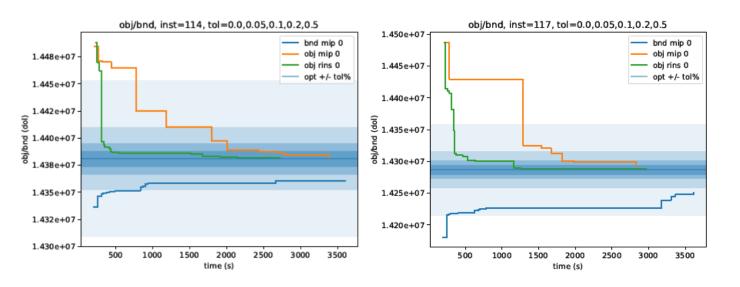
Proudly Operated by Baffelle Since 1965



MIP Gap



- Relaxation induced neighborhood search. Local optimizer for improving an incumbent solution.
- Implemented outside of GRUOBI branch-and-bound with callback to utilize hardware resource and add flexibility of defining neighborhood.
- Have good runtime for finding incumbent solution. Overall runtime is dominated by improving lower bounds.



Other Algorithms

Polishing method

- Identify generators which can potentially lead to more saving.
- Local optimizer for improving solutions.
- ADMM
 - Generate feasible solutions and improving solutions.
 - Solve subproblems generated from other methods
- Cutting planes and strong branching
 - Getting tighter lower bound fast.

The objective of Concurrent Optimizer is to be able to

- Run individual algorithms simultaneously towards optimal solution
- Orchestrate the execution of algorithms and monitor the overall progress.
- Communicate among solvers to reach optimality quicker
 - Incumbent solutions
 - Variables to be fixed
 - Lower bound
 - Binding constraints
- Sounds counter-intuitive, but has advantages
 - Every algorithm is trying to optimally use its resources, does concurrency interfere with the execution?
 - Algorithms have deficiencies, these get corrected through concurrency
 - For example, polishing gets good upper bounds, but MIP can complement it with a good lower bound
 - When applied judiciously, concurrent optimizer adds more benefit than harm

Summary

Validation of HIPPO formulation

GE put tremendous amount of efforts into comparing solutions and tracking down causes.

Performance evaluation

- HIPPO formulation comparable to base model and better in some cases.
- Preliminary algorithm testing most performance gains are by heuristics
- MISO shared their past experiences, domain knowledge and developed algorithms.
- GUROBI shared extensive knowledge how MIP behaves and ideas for improving performance and scoping exercises.