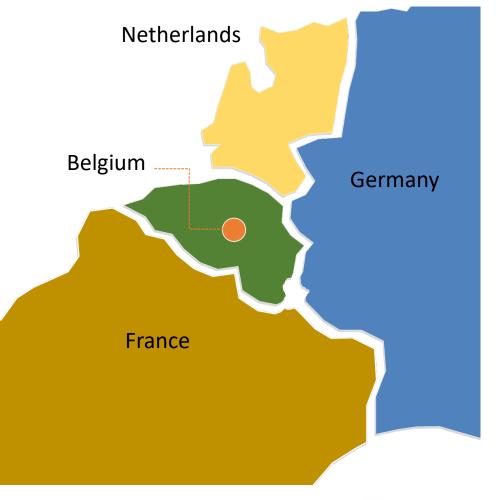


Large-Scale DLR Deployment

Joey Alexander

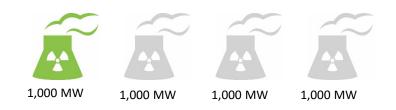
Director, Business Development Ampacimon, Inc Joey.Alexander@Ampacimon.com

F


Powering a world in progress

Belgium's Transmission System Operator

Over 8,700 km of transmission lines


13,000 MW peak consumption (Winter)

2-Day Ahead trading market with France and Netherlands

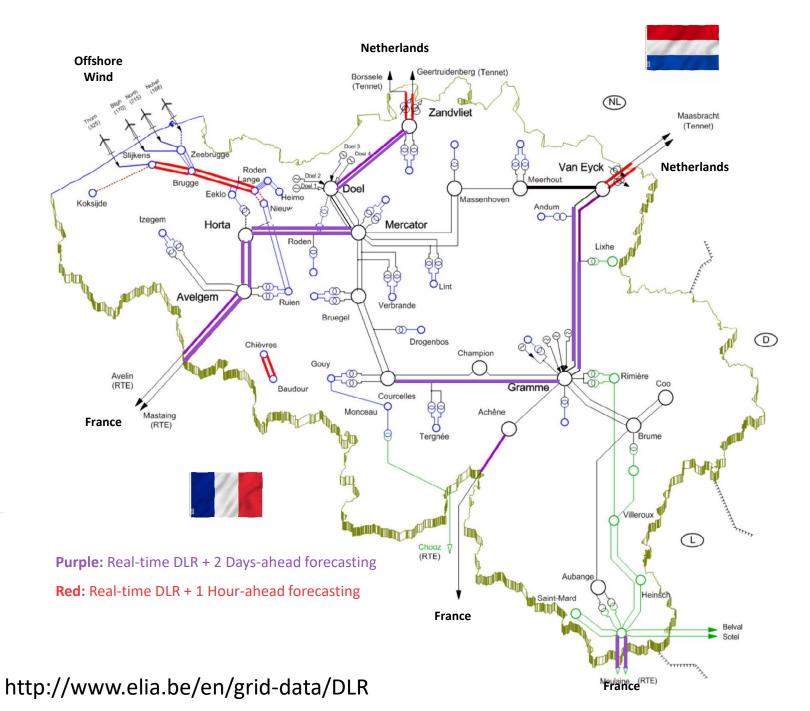
Summer 2014

Elia facing the shutdown of 3 of its 4 nuclear plants due to various technical reasons

The shutdowns represented 3,000 MW in lost generation capacity

Maximum import capacity of 3,000 MW from France and Netherlands

With the imports as a higher risk source, Elia needed to increase it's import transmission capacity by 30% (1,000 MW) and capacity for North-South flows by the winter peak loading time

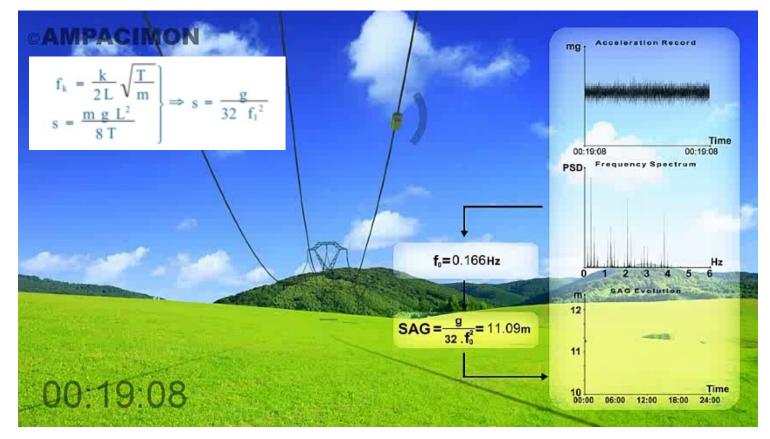


DLR Deployment

Large-Scale DLR Deployment 35 Lines | 167 Devices | 70 kV - 380 kV

How Ampacimon DLR works

ADR SENSE


Method of Operation

- 3-Dimensional vibration sensing (100 μG) to measure line sag and perpendicular wind speed in Realtime
- Powered by current transformer for energy harvesting (no need for battery or solar panel)
- Installs in 15 minutes on deenergized or energized line
- Cellular 4G LTE and Satellite communications sends 5-minute interval data to utility/host for real-time and forecasted DLR using IEEE-738 and CIGRE TB-207
- Realtime Ampacimon HMI + SCADA/EMS Integration through TASE2 and DNP3

Measurement of Sag

F

+/- 1% Sag Measurement Accuracy

NO Calibration and DOES NOT need any external data or conditions such as span geometry, load, weather, topology, suspension movement, creeping or even calibration.

Wind is the key factor to increasing capacity

Ę

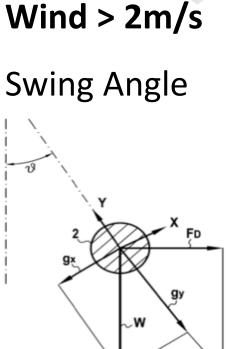
		U.S. Department of Energy	Ap
Operating Conditions	Change in Conditions	Impact on Capacity	
Ambient temperature	2 °C decrease	+ 2%	
	10 °C decrease	+ 11%	
Solar radiation	Cloud shadowing	+/- a few percent	
	Total eclipse	+ 18%	
Wind	nd 3 ft./s increase, 45° angle		
	3 ft./s increase, 90° angle	+ 44%	

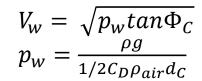
Table 1. Impacts of Changing Operating Conditions on Transmission Line Capacity

Measurement of Effective Wind Speed

Wind < 2m/s

Aeolian Vibration; Vortex-induced vibrations and strouhal equation

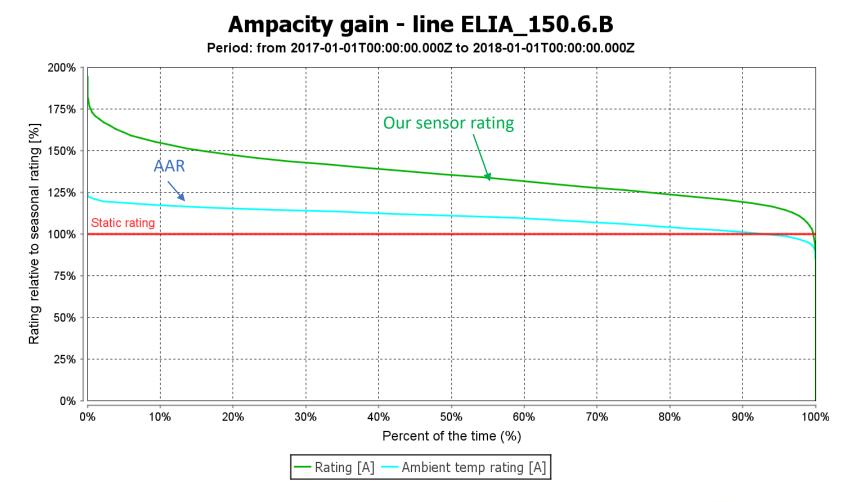

wind vortex


overhead line

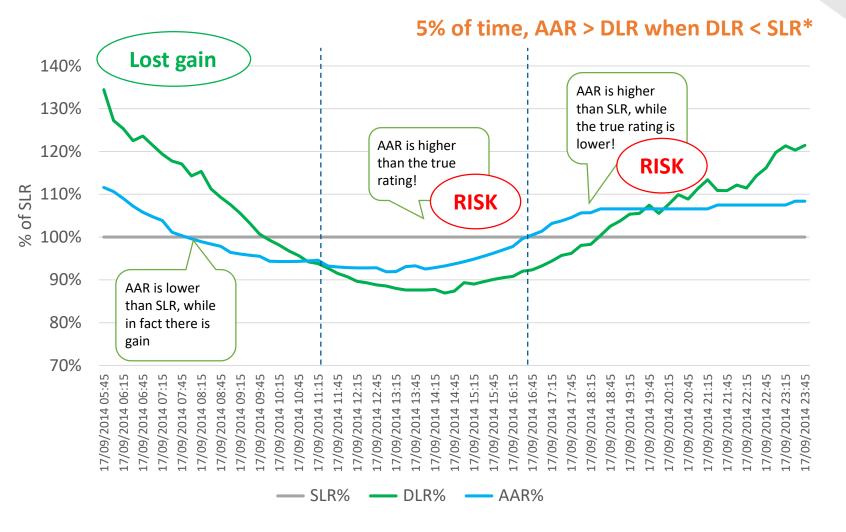
19) United States 12) Patent Application Publication (10) Pub. No.: US 2014/0163884 A1 (43) Pub. Date: Jun. 12, 2014 Lilien et al METHOD AND SYSTEM FOR TH Publication Classificatio DETERMINATION OF WIND SPEEDS AND INCIDENT RADIATION PARAMETERS O (51) Int. Cl. G01W 1/00 (2006.01) OVERHEAD POWER LINES G06F 17/00 2006.01 (71) Applicant: UNIVERSITE DE LIEGE, ANGLEUR (52) U.S. Cl. CPC . G01W 1/00 (2013.01); G06F 17/00 (2013.01) LISPC 702/3 (72) Inventors: Jean-Louis Lilien, Angleur (BE); Huu-Minh Nguyen, Liege (BE); ABSTRACT Bertrand Godard, Liege (BE) The present invention relates to a method and system for the etermination of parameters related to the speed of wind that (73) Assignee: UNIVERSITE DE LIEGE, ANGLEUR s near an overhead electrical power line (single or bundle onductors). The parameters include an "effective wind meed" as well as an "effective incident radiation" acting on a ower line span. The measurement is made by using the (21) Appl. No.: 13/709,474 ombination of mechanical vibrations and movements/pos (22) Filed: Dec. 10, 2012

Strouhal number [0,185] St= fD / U

- f : oscillation wind frequency
- D : Line diameter
- U : Flow velocity (perpendicular wind)
- High Accuracy at low speeds (Aeolian vibrations)
- Measured as a "span-value" exactly at the conductor/line level (not a singlespot location)



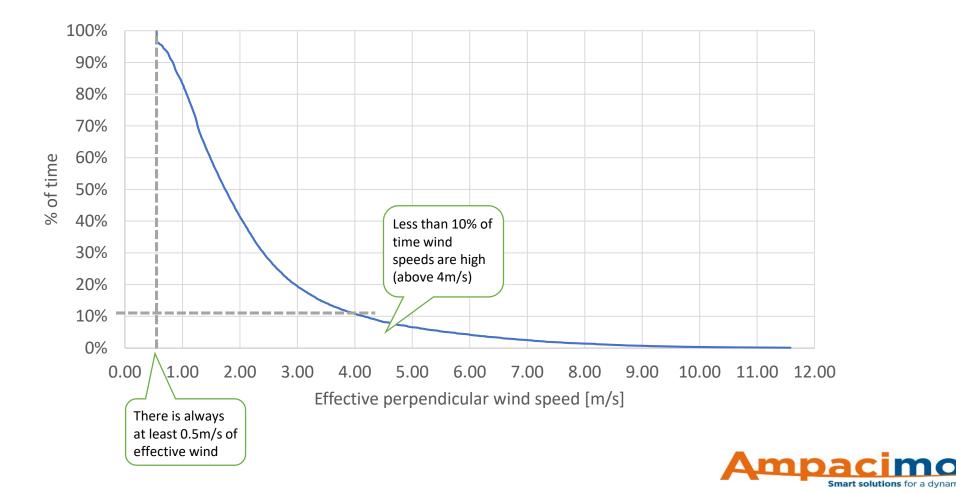
AAR gives less gain


F

AAR exacerbates risk by 5%

Ę

* Based on data set from 2014-2018



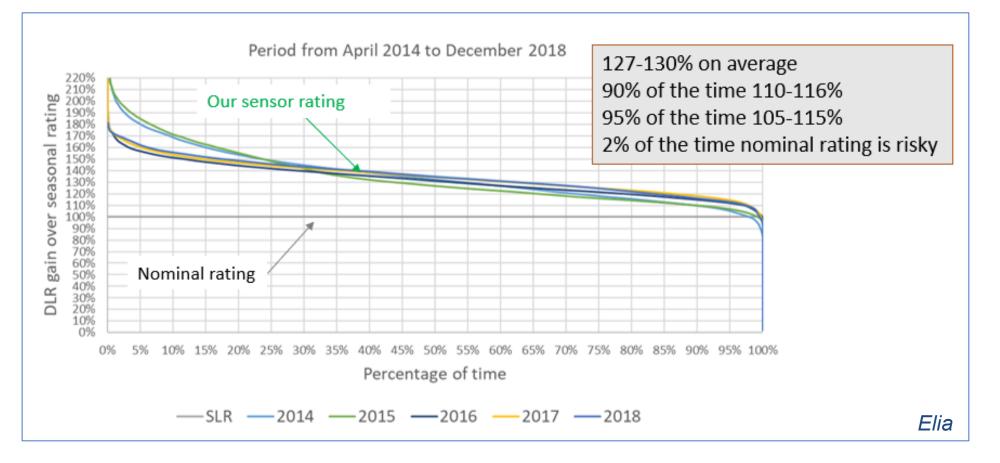
Wind speed at line affecting DLR is less than 4m/s most of the time

• AAR does not capture ANY wind effect

Ē

• Weather-based models cannot estimate accurately local wind speeds in this range

SCADA Integration (ABB)


	Ampacimon - D	ynamic	Line F	Ratings	DASI	1B 15	50/7	0	380/220 BeRe	ady		
	Reference	Measured Flows RT [MVA]		Limit 1h Capped [MVA]	Limit 15min Capped [MVA]	Service Avail [ON/OFF]			Reference	Measured Flows RT [MVA]		Limit 1h Capped [MVA]
	BRUGG 150.05 EEKLO	22.8	173.6	177.7		0			GRAMM 380.11 LIXHE	260.8	1473.9	1658.1
150 kV		10.6	173.6	177.0		0		380 kV	GRAMM 380.12 ZUTE+	285.5	1473.9	1816.0
		23.0	173.6	177.7		0			ACHEN 380.19 LONNY	689.6	1474.3	1916.5
		10.4	173.6	180.6		D			MANYK 380.23 MEERH	265.6	1611.3	1611.3
		96.8	246.4	320.3		D			DOEL 380.25 ZANDV	0.1	1312.1	1569.3
		95.4	246.4	320.3		D			DOEL 380.26 ZANDV	289.6	1312.1	1581.5
		36.1	174.7	190.6		0			MANYK 380.27 MAASB	268.9	1611.3	1611.3
		35.2	174.7	227.1		D			MANYK 380.28 MAASB	96.8	1474.3	1579.6
		7.4	196.0	196.0		D			ZANDV 380.29 BORSS	557.3	1842.4	2232.8
	BAUDO 150.314 CHIEV	5.9	196.0	196.0		0			ZANDV 380.30 GEERT	100.6	1842.4	2231.6
7		9.7	70.6	85.1	8.6	D			COURC 380.31 STAM+	365.9	1473.9	1684.5
0		6.6	70.6	72.6		D			GRAMM 380.31 STAM+	736.3	1473.9	1539.7
		I	I			L			Merca 380.73 Horta	586.3	1474.3	1916.5
									MERCA 380.74 RODE+	636.9	1474.3	1684.9
									HORTA 380.74 RODE+	500.9	1611.3	1611.3
									AVLGM 380.79 MASTA	0.4	1474.3	1474.3
									AVLGM 380.80 AVELT	1.6	1711.6	1711.6
									MANYK 380.91 LIXHE	59.2	1474.3	1579.6
									H <mark>ORTA 380.101 AVLGM</mark>	341.2	1473.9	1916.1
									HORTA 380.102 AVLGM	308.5	1611.7	1971.4
								220	AUBAN 220.513 MOULA	126.4	495.5	596.3
								ō	AUBAN 220.514 MOSMA	131.9	495.5	561.8

Elia DLR Results – 5 Years of Observation

DLR gains available 98% of the time

Ē

Thank You

Joey Alexander

Director, Business Development Ampacimon, Inc Joey.Alexander@Ampacimon.com