

Value of Modelling Constraints in Generation Scheduling

Towards Computationally Efficient Scheduling Proxies

Miguel Ortega-Vazquez Aidan Tuohy

FERC Software Conference June 26th, 2019

Image: Market and the second state of the second state

Background: Link Power System Tools

Introduction

- Modeling accuracy in UC formulation increases computational burden
- Expansion tools need to explore long time horizons (20 years or more) and over multiple scenarios
- Expansion tools resort to simplified versions of UC (convolved LDCs, ignore binaries and constraints, temporal aggregation, cluster generation sets, among others)
 - Gain computational speed
 - Sacrifice solution accuracy
- Worked fairly well in the past, with "well-behaved" and predictable load patterns
- As the penetration of RES increases in the system, variability and uncertainty require greater degrees of flexibility
- The introduction of emerging technologies such as storage require modelling intertemporal couplings

Find the tradeoffs between model accuracy and computational tractability

Proposed Method

Speed up calculations

Modelling assumptions

Enforce desired constraint:

a) Min. up & down times

- b)Reserves requirements
- c) Start-up costs
- d)Minimum stable
- generation (P_{min})

www.epri.com

e) Ramp rates

2: ulation Step Full UC form

Fixed schedule from Step 1 Enforce all UC constraints Determine UC violations

Accommodate RT deviations Determine dispatch and and violations Step 3: reserve violations Cost

Formulation

Full UC formulation: $\min_{u,p} \left\{ \sum_{i \in I} c_i(u_{i,t}, p_{i,t}) \right\}$ $L_t - p_t^{\mathsf{RES}} - \sum_{i \in I} p_{i,t} = 0 \quad \forall t \in T$ $u_i \cdot P_i^{\min} \le p_{i,t} \le u_i \cdot P_i^{\max} \quad \forall t \in T$ $h(\mathbf{u}, \mathbf{p}) \leq 0$ $u \in \{0, 1\}$ $p \in \mathbb{R}^{0+}$

Simplified UC Variants {Enforce some constraint(s)} Most simplified generation "scheduling":

$$\min_{p} \left\{ \sum_{i \in I} c_i(p_{i,t}) \right\}$$
$$L_t - p_t^{\mathsf{RES}} - \sum_{i \in I} p_{i,t} = 0 \quad \forall t \in T$$
$$0 \le p_{i,t} \le P_i^{\max} \quad \forall t \in T$$
$$p \in \mathbb{R}^{0+}$$

A. J. Wood and B. F. Wollenberg, *Power Generation, Operation and Control*, 2nd ed. New York; Chichester: Wiley, 1996. R. Baldick, "The generalized unit commitment problem," *IEEE Trans. Power Syst.*, vol. 10, no. 1, pp. 465-475, Feb. 1995

Test System – RTS GMLC

- Adapted to represent three realistic area
- https://github.com/GridMod/RTS-GMLC

Arizona Power Service

Test System – RTS GMLC

Generation type	Number of units	Fuel	P _{min} (MW)	P _{max} (MW)	Total (MW)	Ramp up (MW/min)	Ramp down (MW/min)
Steam Turbine (ST)	7	Oil	5	12	84.0	1	1
Combustion Turbine (CT)	12	Oli	8	20	240.0	3	3
Combustion Turbine (CT)	27	Natural Gas	22	55	1458.0	3.7	3.7
Steam Turbine (ST)	7	Coal	30	76	532.0	2	2
Steam Turbine (ST)	7	Coal	62	155	1085.0	3	3
Steam Turbine (ST)	2	Coal	140	350	700.0	4	4
Combined cycle (CC)	10	Natural Gas	170	355	3550.0	4.14	4.14
Nuclear	1	Nuclear	396	400	400.0	20	20
Hydro*	20	K water	0	50	400.0	0*	0*
Wind**	4	K wind			2507.9		
Utility PV	25	SI			1554.5		
Rooftop PV	25	SI			1161.4		

Total = 13,672.8 MW

* Schedule determined by a hydro-thermal coordination and deemed as known for scheduling and dispatch purposes. This hydro profile data was obtained from [ref WECC TEPPC 2024]

** Only one wind plan was modelled, 303 WIND 1 www.epri.com

9

Test System – RTS GMLC

www.epri.com

DA and RT time series (TS) for year 2020

Test System – RTS GMLC's Net Demand Error

• Unavoidably, deviations from DA materialize in RT \rightarrow System flexibility

Simulation Parameters

- Power System Optimizer (PSO) based on AIMMS
 - DA cycle: 24 h horizon with 1 h resolution. Nuclear unit is a must run
 - RT cycle: 1 h horizon with 5 min resolution. No additional synchronizations \rightarrow dispatch only
- Reserve products from the RTS-GMLC (regulation, flexibility and spinning)
- Generator physical and operating limits, power balance, reserve requirements
- Penalty factors
 - Load balance violations: \$5000/MWh
 - Reserve violations: Regulation (\$1500/MWh); spinning (\$1250/MWh)
- Solution tolerances
 - MIP gap tolerance: 0.1% (DA and RT)
 - Time limit: 15 min. for DA and 5 min. for RT

Scheduling Process

Full UC formulation: operating costs; ED violations; and RS violations

Simplified UC formulation: operating costs; ED violations; and RS violations

Results are normalized with respect to the simplified UC

Modeling start-up costs only

Unit Commitment – Simplified UC

Unit Commitment – Full UC

Unit Commitment – Start-ups Only

Units' Utilization – Normalized Hours Committed

21

Units' Utilization – Normalized Units' Mileage

22

Aggregated Mileage

- Net demand mileage is the same regardless of the generation schedule
- Each approach results in different aggregated system mileage and cycling

Aggregated Mileage

- Net demand mileage is the same regardless of the generation schedule
- Each approach results in different aggregated system mileage and cycling
- Example: Assume 2 units with start-ups cost costs of \$ 25, and the data on the tables below: Generators

					N	UC&ED "a"					Cycling "a"			
	P _{min} MW	P _{max} MW	π \$/M	ւ IWh			t ₁	t ₂	t ₃			∆t ₂₁	∆t ₃₂	
Unit 1	10	100	1	L	Scheduling cases:	Unit 1	90	100	90		Unit 1	10	10	
Unit 2	10	100	2	2	a) Ignore start-up	Unit 2	10	-	10		Unit 2	10	10	
Load				costs	UC&ED "b"					Cycling "b"				
Load	t	ı t	2	t ₃	b) Consider		t ₁	t ₂	t ₃			$ \Delta t_{21} $	$ \Delta t_{32} $	
Forecas	st 11	.0 10	00 1	110	start-up costs	Unit 1	90	90	90		Unit 1	0	0	
Actua	I 10	0 10	00 1	100		Unit 2	10	10	10		Unit 2	0	0	

Units' Utilization – Units' Utilization Factor

25

Units' Profits

26

Conclusions

- Enforcing start-ups serves as an **indirect umbrella** for other constraints:
 - Min. up & down times:
 - Once a unit is synchronized/shut-down, it will remain as "long" as possible to avoid additional startup costs
 - These on/off periods exceed the minimum up and down times
 - Ramps:
 - Optimization is performed over a time horizon. Keeping sufficient generation synchronized/offline considering the implicit look-ahead periods avoids unnecessary ramping
 - Minimum stable generation (P_{min}):
 - Synchronized generation is used to meet demand considering look-ahead periods, and since its synchronization comes at a cost, unnecessary generation is not synchronized and online generation is dispatched above P^{min}.
 - Reserves:
 - Optimization is performed over long horizons where net demand varies. In order to keep costs at a minimum, sufficient capacity is kept to meet expected peak periods. During lower net demand periods there is an implicit generation margin, i.e. reserve.

Conclusions

- Important to avoid over-generalizations
- Determine sensitivity of start-ups to different parameters
 - Fuel and carbon costs
 - Different penetrations of RES
- Pave the way to new array of tools at EPRI
 - Able to simulate and solve multiple scenarios \rightarrow contingency screening and risk planning
 - New family of expansion tools that account for operating needs

Together...Shaping the Future of Electricity

Support material

Modeling minimum up and down times

Modeling minimum up and down times only

Modeling reserves only

Modeling P_{min} only

Modeling Ramps only

Unit Commitment – min up & down times

Unit Commitment – P_{min} only

Unit Commitment – Ramps only

Unit Commitment – Reserves only

Units' Revenues

Units' Costs

41

. . .

42

Together...Shaping the Future of Electricity

